GeneralizedErrorFunction.java

  1. package org.drip.function.enerf;

  2. /*
  3.  * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
  4.  */

  5. /*!
  6.  * Copyright (C) 2020 Lakshmi Krishnamurthy
  7.  * Copyright (C) 2019 Lakshmi Krishnamurthy
  8.  *
  9.  *  This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
  10.  *      asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
  11.  *      analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
  12.  *      equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
  13.  *      numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
  14.  *      and computational support.
  15.  *  
  16.  *      https://lakshmidrip.github.io/DROP/
  17.  *  
  18.  *  DROP is composed of three modules:
  19.  *  
  20.  *  - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
  21.  *  - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
  22.  *  - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
  23.  *
  24.  *  DROP Product Core implements libraries for the following:
  25.  *  - Fixed Income Analytics
  26.  *  - Loan Analytics
  27.  *  - Transaction Cost Analytics
  28.  *
  29.  *  DROP Portfolio Core implements libraries for the following:
  30.  *  - Asset Allocation Analytics
  31.  *  - Asset Liability Management Analytics
  32.  *  - Capital Estimation Analytics
  33.  *  - Exposure Analytics
  34.  *  - Margin Analytics
  35.  *  - XVA Analytics
  36.  *
  37.  *  DROP Computational Core implements libraries for the following:
  38.  *  - Algorithm Support
  39.  *  - Computation Support
  40.  *  - Function Analysis
  41.  *  - Model Validation
  42.  *  - Numerical Analysis
  43.  *  - Numerical Optimizer
  44.  *  - Spline Builder
  45.  *  - Statistical Learning
  46.  *
  47.  *  Documentation for DROP is Spread Over:
  48.  *
  49.  *  - Main                     => https://lakshmidrip.github.io/DROP/
  50.  *  - Wiki                     => https://github.com/lakshmiDRIP/DROP/wiki
  51.  *  - GitHub                   => https://github.com/lakshmiDRIP/DROP
  52.  *  - Repo Layout Taxonomy     => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
  53.  *  - Javadoc                  => https://lakshmidrip.github.io/DROP/Javadoc/index.html
  54.  *  - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
  55.  *  - Release Versions         => https://lakshmidrip.github.io/DROP/version.html
  56.  *  - Community Credits        => https://lakshmidrip.github.io/DROP/credits.html
  57.  *  - Issues Catalog           => https://github.com/lakshmiDRIP/DROP/issues
  58.  *  - JUnit                    => https://lakshmidrip.github.io/DROP/junit/index.html
  59.  *  - Jacoco                   => https://lakshmidrip.github.io/DROP/jacoco/index.html
  60.  *
  61.  *  Licensed under the Apache License, Version 2.0 (the "License");
  62.  *      you may not use this file except in compliance with the License.
  63.  *  
  64.  *  You may obtain a copy of the License at
  65.  *      http://www.apache.org/licenses/LICENSE-2.0
  66.  *  
  67.  *  Unless required by applicable law or agreed to in writing, software
  68.  *      distributed under the License is distributed on an "AS IS" BASIS,
  69.  *      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  70.  *  
  71.  *  See the License for the specific language governing permissions and
  72.  *      limitations under the License.
  73.  */

  74. /**
  75.  * <i>GeneralizedErrorFunction</i> implements the Generalized E<sub>n</sub> Error Function (erf). The
  76.  * References are:
  77.  *
  78.  * <br><br>
  79.  *  <ul>
  80.  *      <li>
  81.  *          Abramowitz, M., and I. A. Stegun (2007): <i>Handbook of Mathematics Functions</i> <b>Dover Book
  82.  *              on Mathematics</b>
  83.  *      </li>
  84.  *      <li>
  85.  *          Chang, S. H., P. C. Cosman, L. B. Milstein (2011): Chernoff-Type Bounds for Gaussian Error
  86.  *              Function <i>IEEE Transactions on Communications</i> <b>59 (11)</b> 2939-2944
  87.  *      </li>
  88.  *      <li>
  89.  *          Cody, W. J. (1991): Algorithm 715: SPECFUN – A Portable FORTRAN Package of Special Function
  90.  *              Routines and Test Drivers <i>ACM Transactions on Mathematical Software</i> <b>19 (1)</b>
  91.  *              22-32
  92.  *      </li>
  93.  *      <li>
  94.  *          Schopf, H. M., and P. H. Supancic (2014): On Burmann’s Theorem and its Application to Problems of
  95.  *              Linear and Non-linear Heat Transfer and Diffusion
  96.  *              https://www.mathematica-journal.com/2014/11/on-burmanns-theorem-and-its-application-to-problems-of-linear-and-nonlinear-heat-transfer-and-diffusion/#more-39602/
  97.  *      </li>
  98.  *      <li>
  99.  *          Wikipedia (2019): Error Function https://en.wikipedia.org/wiki/Error_function
  100.  *      </li>
  101.  *  </ul>
  102.  *
  103.  *  <br><br>
  104.  *  <ul>
  105.  *      <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
  106.  *      <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalAnalysisLibrary.md">Numerical Analysis Library</a></li>
  107.  *      <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/function/README.md">R<sup>d</sup> To R<sup>d</sup> Function Analysis</a></li>
  108.  *      <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/function/enerf/README.md">E<sub>n</sub> erf Series and Generators</a></li>
  109.  *  </ul>
  110.  *
  111.  * @author Lakshmi Krishnamurthy
  112.  */

  113. public abstract class GeneralizedErrorFunction extends org.drip.numerical.estimation.R1ToR1Estimator
  114. {
  115.     private int _degree = -1;
  116.     private org.drip.numerical.estimation.R1ToR1Series _r1ToR1SeriesGenerator = null;

  117.     /**
  118.      * Construct the Euler-MacLaurin Instance of the E<sub>n</sub> erf
  119.      *
  120.      * @param degree Degree Generalized E<sub>n</sub> Degree
  121.      * @param termCount The Count of Approximation Terms
  122.      *
  123.      * @return The Euler-MacLaurin Instance of the E<sub>n</sub> erf
  124.      */

  125.     public static final GeneralizedErrorFunction MacLaurin (
  126.         final int degree,
  127.         final int termCount)
  128.     {
  129.         final org.drip.numerical.estimation.R1ToR1Series r1ToR1SeriesGenerator =
  130.             org.drip.function.enerf.GeneralizedMacLaurinSeriesGenerator.ERF (
  131.                 degree,
  132.                 termCount
  133.             );

  134.         if (null == r1ToR1SeriesGenerator)
  135.         {
  136.             return null;
  137.         }

  138.         try
  139.         {
  140.             return new GeneralizedErrorFunction (
  141.                 r1ToR1SeriesGenerator,
  142.                 null,
  143.                 degree
  144.             )
  145.             {
  146.                 @Override public double evaluate (
  147.                     final double z)
  148.                     throws java.lang.Exception
  149.                 {
  150.                     if (!org.drip.numerical.common.NumberUtil.IsValid (z))
  151.                     {
  152.                         throw new java.lang.Exception
  153.                             ("GeneralizedErrorFunction::MacLaurin::evaluate => Invalid Inputs");
  154.                     }

  155.                     double erf = org.drip.numerical.common.NumberUtil.Factorial (degree) /
  156.                         java.lang.Math.sqrt (java.lang.Math.PI) *
  157.                         r1ToR1SeriesGenerator.cumulative (
  158.                             0.,
  159.                             z
  160.                         );

  161.                     return erf > 1. ? 1. : erf;
  162.                 }
  163.             };
  164.         }
  165.         catch (java.lang.Exception e)
  166.         {
  167.             e.printStackTrace();
  168.         }

  169.         return null;
  170.     }

  171.     protected GeneralizedErrorFunction (
  172.         final org.drip.numerical.estimation.R1ToR1Series r1ToR1SeriesGenerator,
  173.         final org.drip.numerical.differentiation.DerivativeControl dc,
  174.         final int degree)
  175.         throws java.lang.Exception
  176.     {
  177.         super (dc);

  178.         _r1ToR1SeriesGenerator = r1ToR1SeriesGenerator;

  179.         if (0 > (_degree = degree))
  180.         {
  181.             throw new java.lang.Exception ("GeneralizedErrorFunction Constructor => Invalid Inputs");
  182.         }
  183.     }

  184.     /**
  185.      * Retrieve the Degree of the E<sub>n</sub> erf
  186.      *
  187.      * @return Degree of the E<sub>n</sub> erf
  188.      */

  189.     public int degree()
  190.     {
  191.         return _degree;
  192.     }

  193.     @Override public org.drip.numerical.estimation.R1Estimate seriesEstimateNative (
  194.         final double x)
  195.     {
  196.         return null == _r1ToR1SeriesGenerator ? seriesEstimate (
  197.             x,
  198.             null,
  199.             null
  200.         ) : seriesEstimate (
  201.             x,
  202.             _r1ToR1SeriesGenerator.termWeightMap(),
  203.             _r1ToR1SeriesGenerator
  204.         );
  205.     }
  206. }