GeneralizedMacLaurinSeriesGenerator.java

  1. package org.drip.function.enerf;

  2. /*
  3.  * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
  4.  */

  5. /*!
  6.  * Copyright (C) 2020 Lakshmi Krishnamurthy
  7.  * Copyright (C) 2019 Lakshmi Krishnamurthy
  8.  *
  9.  *  This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
  10.  *      asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
  11.  *      analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
  12.  *      equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
  13.  *      numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
  14.  *      and computational support.
  15.  *  
  16.  *      https://lakshmidrip.github.io/DROP/
  17.  *  
  18.  *  DROP is composed of three modules:
  19.  *  
  20.  *  - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
  21.  *  - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
  22.  *  - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
  23.  *
  24.  *  DROP Product Core implements libraries for the following:
  25.  *  - Fixed Income Analytics
  26.  *  - Loan Analytics
  27.  *  - Transaction Cost Analytics
  28.  *
  29.  *  DROP Portfolio Core implements libraries for the following:
  30.  *  - Asset Allocation Analytics
  31.  *  - Asset Liability Management Analytics
  32.  *  - Capital Estimation Analytics
  33.  *  - Exposure Analytics
  34.  *  - Margin Analytics
  35.  *  - XVA Analytics
  36.  *
  37.  *  DROP Computational Core implements libraries for the following:
  38.  *  - Algorithm Support
  39.  *  - Computation Support
  40.  *  - Function Analysis
  41.  *  - Model Validation
  42.  *  - Numerical Analysis
  43.  *  - Numerical Optimizer
  44.  *  - Spline Builder
  45.  *  - Statistical Learning
  46.  *
  47.  *  Documentation for DROP is Spread Over:
  48.  *
  49.  *  - Main                     => https://lakshmidrip.github.io/DROP/
  50.  *  - Wiki                     => https://github.com/lakshmiDRIP/DROP/wiki
  51.  *  - GitHub                   => https://github.com/lakshmiDRIP/DROP
  52.  *  - Repo Layout Taxonomy     => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
  53.  *  - Javadoc                  => https://lakshmidrip.github.io/DROP/Javadoc/index.html
  54.  *  - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
  55.  *  - Release Versions         => https://lakshmidrip.github.io/DROP/version.html
  56.  *  - Community Credits        => https://lakshmidrip.github.io/DROP/credits.html
  57.  *  - Issues Catalog           => https://github.com/lakshmiDRIP/DROP/issues
  58.  *  - JUnit                    => https://lakshmidrip.github.io/DROP/junit/index.html
  59.  *  - Jacoco                   => https://lakshmidrip.github.io/DROP/jacoco/index.html
  60.  *
  61.  *  Licensed under the Apache License, Version 2.0 (the "License");
  62.  *      you may not use this file except in compliance with the License.
  63.  *  
  64.  *  You may obtain a copy of the License at
  65.  *      http://www.apache.org/licenses/LICENSE-2.0
  66.  *  
  67.  *  Unless required by applicable law or agreed to in writing, software
  68.  *      distributed under the License is distributed on an "AS IS" BASIS,
  69.  *      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  70.  *  
  71.  *  See the License for the specific language governing permissions and
  72.  *      limitations under the License.
  73.  */

  74. /**
  75.  * <i>GeneralizedMacLaurinSeriesGenerator</i> implements the E<sub>n</sub> MacLaurin Series Term Generator.
  76.  * The References are:
  77.  *
  78.  * <br><br>
  79.  *  <ul>
  80.  *      <li>
  81.  *          Abramowitz, M., and I. A. Stegun (2007): <i>Handbook of Mathematics Functions</i> <b>Dover Book
  82.  *              on Mathematics</b>
  83.  *      </li>
  84.  *      <li>
  85.  *          Chang, S. H., P. C. Cosman, L. B. Milstein (2011): Chernoff-Type Bounds for Gaussian Error
  86.  *              Function <i>IEEE Transactions on Communications</i> <b>59 (11)</b> 2939-2944
  87.  *      </li>
  88.  *      <li>
  89.  *          Cody, W. J. (1991): Algorithm 715: SPECFUN – A Portable FORTRAN Package of Special Function
  90.  *              Routines and Test Drivers <i>ACM Transactions on Mathematical Software</i> <b>19 (1)</b>
  91.  *              22-32
  92.  *      </li>
  93.  *      <li>
  94.  *          Schopf, H. M., and P. H. Supancic (2014): On Burmann’s Theorem and its Application to Problems of
  95.  *              Linear and Non-linear Heat Transfer and Diffusion
  96.  *              https://www.mathematica-journal.com/2014/11/on-burmanns-theorem-and-its-application-to-problems-of-linear-and-nonlinear-heat-transfer-and-diffusion/#more-39602/
  97.  *      </li>
  98.  *      <li>
  99.  *          Wikipedia (2019): Error Function https://en.wikipedia.org/wiki/Error_function
  100.  *      </li>
  101.  *  </ul>
  102.  *
  103.  *  <br><br>
  104.  *  <ul>
  105.  *      <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
  106.  *      <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalAnalysisLibrary.md">Numerical Analysis Library</a></li>
  107.  *      <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/function/README.md">R<sup>d</sup> To R<sup>d</sup> Function Analysis</a></li>
  108.  *      <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/function/enerf/README.md">E<sub>n</sub> erf Series and Generators</a></li>
  109.  *  </ul>
  110.  *
  111.  * @author Lakshmi Krishnamurthy
  112.  */

  113. public class GeneralizedMacLaurinSeriesGenerator
  114. {

  115.     /**
  116.      * Construct the E<sub>n</sub> erf MacLaurin Series Generator
  117.      *
  118.      * @param degree Generalized E<sub>n</sub> Degree
  119.      * @param termCount Count of the Number of Terms
  120.      *
  121.      * @return E<sub>n</sub> erf MacLaurin Series Generator
  122.      */

  123.     public static final org.drip.numerical.estimation.R1ToR1Series ERF (
  124.         final int degree,
  125.         final int termCount)
  126.     {
  127.         java.util.TreeMap<java.lang.Integer, java.lang.Double> termWeightMap = new
  128.             java.util.TreeMap<java.lang.Integer, java.lang.Double>();

  129.         double signedInverseFactorial = 1.;

  130.         for (int termIndex = 0; termIndex <= termCount; ++termIndex)
  131.         {
  132.             signedInverseFactorial = 0 == termIndex ? 1. : signedInverseFactorial * -1. / termIndex;

  133.             termWeightMap.put (
  134.                 termIndex,
  135.                 signedInverseFactorial / (degree * termIndex + 1.)
  136.             );
  137.         }

  138.         try
  139.         {
  140.             return new org.drip.numerical.estimation.R1ToR1Series (
  141.                 new org.drip.function.enerf.GeneralizedMacLaurinSeriesTerm (degree),
  142.                 false,
  143.                 termWeightMap
  144.             );
  145.         }
  146.         catch (java.lang.Exception e)
  147.         {
  148.             e.printStackTrace();
  149.         }

  150.         return null;
  151.     }
  152. }