Square.java
- package org.drip.function.matrix;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting risk, transaction costs, exposure, margin
- * calculations, valuation adjustment, and portfolio construction within and across fixed income,
- * credit, commodity, equity, FX, and structured products.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three modules:
- *
- * - DROP Analytics Core - https://lakshmidrip.github.io/DROP-Analytics-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Numerical Core - https://lakshmidrip.github.io/DROP-Numerical-Core/
- *
- * DROP Analytics Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Asset Backed Analytics
- * - XVA Analytics
- * - Exposure and Margin Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Transaction Cost Analytics
- *
- * DROP Numerical Core implements libraries for the following:
- * - Statistical Learning
- * - Numerical Optimizer
- * - Spline Builder
- * - Algorithm Support
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>Square</i> implements a Square Matrix. The References are:
- *
- * <br><br>
- * <ul>
- * <li>
- * Claerbout, J. F. (1985): <i>Fundamentals of Geo-physical Data Processing</i> <b>Blackwell
- * Scientific</b>
- * </li>
- * <li>
- * Horn, R. A., and C. R. Johnson (1991): <i>Topics in Matrix Analysis</i> <b>Cambridge University
- * Press</b>
- * </li>
- * <li>
- * Schwerdtfeger, A. (1938): <i>Les Fonctions de Matrices: Les Fonctions Univalentes I</i>
- * <b>Hermann</b> Paris, France
- * </li>
- * <li>
- * Sylvester, J. J. (1883): On the Equation to the Secular Inequalities in the Planetary Theory
- * <i>The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science</i> <b>16
- * (100)</b> 267-269
- * </li>
- * <li>
- * Wikipedia (2019): Sylvester Formula https://en.wikipedia.org/wiki/Sylvester%27s_formula
- * </li>
- * </ul>
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalCore.md">Numerical Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalSupportLibrary.md">Numerical Support Library</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/sample/README.md">Sample</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/sample/matrix/README.md">Linear Algebra and Matrix Utilities</a></li>
- * </ul>
- * <br><br>
- *
- * @author Lakshmi Krishnamurthy
- */
- public class Square
- {
- public double[][] _grid = null;
- /**
- * Square Constructor
- *
- * @param grid Grid of Elements
- *
- * @throws java.lang.Exception Throwjn if the Inputs are Invalid
- */
- public Square (
- final double[][] grid)
- throws java.lang.Exception
- {
- if (null == (_grid = grid))
- {
- throw new java.lang.Exception (
- "Square Constructor => Invalid Inputs"
- );
- }
- int dimension = _grid.length;
- if (0 == dimension)
- {
- throw new java.lang.Exception (
- "Square Constructor => Invalid Inputs"
- );
- }
- for (int dimensionIndex = 0;
- dimensionIndex < dimension;
- ++dimensionIndex)
- {
- if (null == _grid[dimensionIndex] ||
- dimension != _grid[dimensionIndex].length ||
- !org.drip.numerical.common.NumberUtil.IsValid (
- _grid[dimensionIndex]
- )
- )
- {
- throw new java.lang.Exception (
- "Square Constructor => Invalid Inputs"
- );
- }
- }
- }
- /**
- * Retrieve the Grid of Elements
- *
- * @return Grid of Elements
- */
- public double[][] grid()
- {
- return _grid;
- }
- /**
- * Retrieve the Dimension of the Square Matrix
- *
- * @return Dimension of the Square Matrix
- */
- public int dimension()
- {
- return _grid.length;
- }
- /**
- * Retrieve the Eigen-Components of the Square Matrix
- *
- * @return The Eigen-Components of the Square Matrix
- */
- public org.drip.numerical.eigen.EigenOutput eigenize()
- {
- try
- {
- return new org.drip.numerical.eigen.QREigenComponentExtractor (
- 100,
- 1.e-06
- ).eigenize (
- _grid
- );
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Generate the Frobenius Covariance
- *
- * @return The Frobenius Covariance
- */
- public org.drip.function.matrix.FrobeniusCovariance frobeniusCovariance()
- {
- org.drip.function.matrix.FrobeniusCovariance frobeniusCovariance =
- new org.drip.function.matrix.FrobeniusCovariance();
- org.drip.numerical.eigen.EigenOutput eigenOutput = eigenize();
- if (null == eigenOutput)
- {
- return null;
- }
- double[] eigenValueArray = eigenOutput.eigenValueArray();
- int dimension = _grid.length;
- double[][][] eigenShadowArray = new double[dimension][dimension][dimension];
- for (int eigenIndex = 0;
- eigenIndex < dimension;
- ++eigenIndex)
- {
- for (int dimensionIndexI = 0;
- dimensionIndexI < dimension;
- ++dimensionIndexI)
- {
- for (int dimensionIndexJ = 0;
- dimensionIndexJ < dimension;
- ++dimensionIndexJ)
- {
- eigenShadowArray[eigenIndex][dimensionIndexI][dimensionIndexJ] =
- _grid[dimensionIndexI][dimensionIndexJ] - (
- dimensionIndexI == dimensionIndexJ ? eigenValueArray[eigenIndex] : 0.
- );
- }
- }
- }
- for (int componentIndex = 0;
- componentIndex < dimension;
- ++componentIndex)
- {
- double[][] frobeniusComponentMatrix = null;
- double componentEigenValue = eigenValueArray[componentIndex];
- for (int eigenIndex = 0;
- eigenIndex < dimension;
- ++eigenIndex)
- {
- if (eigenIndex == componentIndex)
- {
- continue;
- }
- if (null == frobeniusComponentMatrix)
- {
- frobeniusComponentMatrix = org.drip.numerical.linearalgebra.Matrix.Scale2D (
- eigenShadowArray[eigenIndex],
- 1. / (componentEigenValue - eigenValueArray[eigenIndex])
- );
- }
- else
- {
- frobeniusComponentMatrix = org.drip.numerical.linearalgebra.Matrix.Scale2D (
- org.drip.numerical.linearalgebra.Matrix.Product (
- frobeniusComponentMatrix,
- eigenShadowArray[eigenIndex]
- ),
- 1. / (componentEigenValue - eigenValueArray[eigenIndex])
- );
- }
- }
- try
- {
- if (!frobeniusCovariance.addComponent (
- componentEigenValue,
- new org.drip.function.matrix.Square (
- frobeniusComponentMatrix
- )
- ))
- {
- return null;
- }
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- }
- }
- return frobeniusCovariance;
- }
- /**
- * Compute the Value of the Matrix using the specified Function
- *
- * @param r1ToR1Function The R<sup>1</sup> To R<sup>1</sup> Function
- *
- * @return The Function Matrix Value
- */
- public double[][] evaluate (
- final org.drip.function.definition.R1ToR1 r1ToR1Function)
- {
- if (null == r1ToR1Function)
- {
- return null;
- }
- int dimension = _grid.length;
- double[][] matrixFunction = null;
- org.drip.function.matrix.FrobeniusCovariance frobeniusCovariance = frobeniusCovariance();
- if (null == frobeniusCovariance)
- {
- return null;
- }
- for (java.util.Map.Entry<java.lang.Double, org.drip.function.matrix.Square> componentMapEntry :
- frobeniusCovariance.componentMap().entrySet())
- {
- double[][] frobeniusComponentFunctionProjection = null;
- try
- {
- frobeniusComponentFunctionProjection = org.drip.numerical.linearalgebra.Matrix.Scale2D (
- componentMapEntry.getValue().grid(),
- r1ToR1Function.evaluate (
- componentMapEntry.getKey()
- )
- );
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- return null;
- }
- if (null == frobeniusComponentFunctionProjection)
- {
- return null;
- }
- if (null == matrixFunction)
- {
- matrixFunction = frobeniusComponentFunctionProjection;
- }
- else
- {
- for (int dimensionIndexI = 0;
- dimensionIndexI < dimension;
- ++dimensionIndexI)
- {
- for (int dimensionIndexJ = 0;
- dimensionIndexJ < dimension;
- ++dimensionIndexJ)
- {
- matrixFunction[dimensionIndexI][dimensionIndexJ] =
- matrixFunction[dimensionIndexI][dimensionIndexJ] +
- frobeniusComponentFunctionProjection[dimensionIndexI][dimensionIndexJ];
- }
- }
- }
- }
- return matrixFunction;
- }
- /**
- * Compute the Determinant
- *
- * @return The Determinant
- */
- public double determinant()
- {
- org.drip.numerical.eigen.EigenOutput eigenOutput = eigenize();
- if (null == eigenOutput)
- {
- return 0.;
- }
- double[] eigenValueArray = eigenOutput.eigenValueArray();
- double determinant = 1.;
- int dimension = _grid.length;
- for (int eigenIndex = 0;
- eigenIndex < dimension;
- ++eigenIndex)
- {
- determinant = determinant * eigenValueArray[eigenIndex];
- }
- return determinant;
- }
- }