R1UnivariateCIRPDF.java

  1. package org.drip.function.r1tor1;

  2. /*
  3.  * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
  4.  */

  5. /*!
  6.  * Copyright (C) 2020 Lakshmi Krishnamurthy
  7.  * Copyright (C) 2019 Lakshmi Krishnamurthy
  8.  *
  9.  *  This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
  10.  *      asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
  11.  *      analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
  12.  *      equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
  13.  *      numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
  14.  *      and computational support.
  15.  *  
  16.  *      https://lakshmidrip.github.io/DROP/
  17.  *  
  18.  *  DROP is composed of three modules:
  19.  *  
  20.  *  - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
  21.  *  - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
  22.  *  - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
  23.  *
  24.  *  DROP Product Core implements libraries for the following:
  25.  *  - Fixed Income Analytics
  26.  *  - Loan Analytics
  27.  *  - Transaction Cost Analytics
  28.  *
  29.  *  DROP Portfolio Core implements libraries for the following:
  30.  *  - Asset Allocation Analytics
  31.  *  - Asset Liability Management Analytics
  32.  *  - Capital Estimation Analytics
  33.  *  - Exposure Analytics
  34.  *  - Margin Analytics
  35.  *  - XVA Analytics
  36.  *
  37.  *  DROP Computational Core implements libraries for the following:
  38.  *  - Algorithm Support
  39.  *  - Computation Support
  40.  *  - Function Analysis
  41.  *  - Model Validation
  42.  *  - Numerical Analysis
  43.  *  - Numerical Optimizer
  44.  *  - Spline Builder
  45.  *  - Statistical Learning
  46.  *
  47.  *  Documentation for DROP is Spread Over:
  48.  *
  49.  *  - Main                     => https://lakshmidrip.github.io/DROP/
  50.  *  - Wiki                     => https://github.com/lakshmiDRIP/DROP/wiki
  51.  *  - GitHub                   => https://github.com/lakshmiDRIP/DROP
  52.  *  - Repo Layout Taxonomy     => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
  53.  *  - Javadoc                  => https://lakshmidrip.github.io/DROP/Javadoc/index.html
  54.  *  - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
  55.  *  - Release Versions         => https://lakshmidrip.github.io/DROP/version.html
  56.  *  - Community Credits        => https://lakshmidrip.github.io/DROP/credits.html
  57.  *  - Issues Catalog           => https://github.com/lakshmiDRIP/DROP/issues
  58.  *  - JUnit                    => https://lakshmidrip.github.io/DROP/junit/index.html
  59.  *  - Jacoco                   => https://lakshmidrip.github.io/DROP/jacoco/index.html
  60.  *
  61.  *  Licensed under the Apache License, Version 2.0 (the "License");
  62.  *      you may not use this file except in compliance with the License.
  63.  *  
  64.  *  You may obtain a copy of the License at
  65.  *      http://www.apache.org/licenses/LICENSE-2.0
  66.  *  
  67.  *  Unless required by applicable law or agreed to in writing, software
  68.  *      distributed under the License is distributed on an "AS IS" BASIS,
  69.  *      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  70.  *  
  71.  *  See the License for the specific language governing permissions and
  72.  *      limitations under the License.
  73.  */

  74. /**
  75.  * <i>R1UnivariateCIRPDF</i> exposes the R<sup>1</sup> Univariate Cox-Ingersoll-Ross Probability Density
  76.  *  Function. The References are:
  77.  *  
  78.  *  <br><br>
  79.  *  <ul>
  80.  *      <li>
  81.  *          Bogoliubov, N. N., and D. P. Sankevich (1994): N. N. Bogoliubov and Statistical Mechanics
  82.  *              <i>Russian Mathematical Surveys</i> <b>49 (5)</b> 19-49
  83.  *      </li>
  84.  *      <li>
  85.  *          Holubec, V., K. Kroy, and S. Steffenoni (2019): Physically Consistent Numerical Solver for
  86.  *              Time-dependent Fokker-Planck Equations <i>Physical Review E</i> <b>99 (4)</b> 032117
  87.  *      </li>
  88.  *      <li>
  89.  *          Kadanoff, L. P. (2000): <i>Statistical Physics: Statics, Dynamics, and Re-normalization</i>
  90.  *              <b>World Scientific</b>
  91.  *      </li>
  92.  *      <li>
  93.  *          Ottinger, H. C. (1996): <i>Stochastic Processes in Polymeric Fluids</i> <b>Springer-Verlag</b>
  94.  *              Berlin-Heidelberg
  95.  *      </li>
  96.  *      <li>
  97.  *          Wikipedia (2019): Fokker-Planck Equation
  98.  *              https://en.wikipedia.org/wiki/Fokker%E2%80%93Planck_equation
  99.  *      </li>
  100.  *  </ul>
  101.  *
  102.  *  <br><br>
  103.  *  <ul>
  104.  *      <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ProductCore.md">Product Core Module</a></li>
  105.  *      <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/FixedIncomeAnalyticsLibrary.md">Fixed Income Analytics</a></li>
  106.  *      <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/dynamics/README.md">HJM, Hull White, LMM, and SABR Dynamic Evolution Models</a></li>
  107.  *      <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/dynamics/kolmogorov/README.md">Fokker Planck Kolmogorov Forward/Backward</a></li>
  108.  *  </ul>
  109.  *
  110.  * @author Lakshmi Krishnamurthy
  111.  */

  112. public class R1UnivariateCIRPDF
  113.     extends org.drip.function.definition.R1ToR1
  114. {
  115.     private double _beta = java.lang.Double.NaN;
  116.     private double _alpha = java.lang.Double.NaN;
  117.     private org.drip.function.definition.R1ToR1 _gammaFunction = null;

  118.     /**
  119.      * Construct a Standard Instance of R1UnivariateCIRPDF
  120.      *
  121.      * @param cklsParameters The CKLS Parameters
  122.      *
  123.      * @return Standard Instance of R1UnivariateCIRPDF
  124.      */

  125.     public static final R1UnivariateCIRPDF Standard (
  126.         final org.drip.dynamics.meanreverting.CKLSParameters cklsParameters)
  127.     {
  128.         if (null == cklsParameters)
  129.         {
  130.             return null;
  131.         }

  132.         double volatility = cklsParameters.volatilityCoefficient();

  133.         double beta = 2. * cklsParameters.meanReversionSpeed() / volatility / volatility;

  134.         try
  135.         {
  136.             return new R1UnivariateCIRPDF (
  137.                 beta * cklsParameters.meanReversionLevel(),
  138.                 beta,
  139.                 new org.drip.specialfunction.gamma.NemesAnalytic (
  140.                     null
  141.                 )
  142.             );
  143.         }
  144.         catch (java.lang.Exception e)
  145.         {
  146.             e.printStackTrace();
  147.         }

  148.         return null;
  149.     }

  150.     /**
  151.      * R1UnivariateCIRPDF Constructor
  152.      *
  153.      * @param alpha The Alpha
  154.      * @param beta The Beta
  155.      * @param gammaFunction The Gamma Function
  156.      *
  157.      * @throws java.lang.Exception Thrown if the Inputs are Invalid
  158.      */

  159.     public R1UnivariateCIRPDF (
  160.         final double alpha,
  161.         final double beta,
  162.         final org.drip.function.definition.R1ToR1 gammaFunction)
  163.         throws java.lang.Exception
  164.     {
  165.         super (
  166.             null
  167.         );

  168.         if (!org.drip.numerical.common.NumberUtil.IsValid (
  169.                 _alpha = alpha
  170.             ) || !org.drip.numerical.common.NumberUtil.IsValid (
  171.                 _beta = beta
  172.             ) || null == (_gammaFunction = gammaFunction)
  173.         )
  174.         {
  175.             throw new java.lang.Exception (
  176.                 "R1UnivariateCIRPDF CVonstructor => IOnvalid Inputs"
  177.             );
  178.         }
  179.     }

  180.     /**
  181.      * Retrieve Alpha
  182.      *
  183.      * @return The Alpha
  184.      */

  185.     public double alpha()
  186.     {
  187.         return _alpha;
  188.     }

  189.     /**
  190.      * Retrieve Beta
  191.      *
  192.      * @return The Beta
  193.      */

  194.     public double beta()
  195.     {
  196.         return _beta;
  197.     }

  198.     /**
  199.      * Retrieve the Gamma Function
  200.      *
  201.      * @return The Gamma Function
  202.      */

  203.     public org.drip.function.definition.R1ToR1 gammaFunction()
  204.     {
  205.         return _gammaFunction;
  206.     }

  207.     @Override public double evaluate (
  208.         final double r)
  209.         throws java.lang.Exception
  210.     {
  211.         if (!org.drip.numerical.common.NumberUtil.IsValid (
  212.             r
  213.         ))
  214.         {
  215.             throw new java.lang.Exception (
  216.                 "R1UnivariateCIRPDF::evaluate => Invalid Inputs"
  217.             );
  218.         }

  219.         return java.lang.Math.pow (
  220.             _beta,
  221.             _alpha
  222.         ) * java.lang.Math.pow (
  223.             r,
  224.             _alpha - 1.
  225.         ) * java.lang.Math.exp (
  226.             -1. * _beta * r
  227.         ) / _gammaFunction.evaluate (
  228.             _alpha
  229.         );
  230.     }
  231. }