CovarianceEllipsoidMultivariate.java

package org.drip.function.rdtor1;

/*
 * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
 */

/*!
 * Copyright (C) 2020 Lakshmi Krishnamurthy
 * Copyright (C) 2019 Lakshmi Krishnamurthy
 * Copyright (C) 2018 Lakshmi Krishnamurthy
 * Copyright (C) 2017 Lakshmi Krishnamurthy
 * Copyright (C) 2016 Lakshmi Krishnamurthy
 * 
 *  This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
 *  	asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
 *  	analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
 *  	equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
 *  	numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
 *  	and computational support.
 *  
 *  	https://lakshmidrip.github.io/DROP/
 *  
 *  DROP is composed of three modules:
 *  
 *  - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
 *  - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
 *  - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
 * 
 * 	DROP Product Core implements libraries for the following:
 * 	- Fixed Income Analytics
 * 	- Loan Analytics
 * 	- Transaction Cost Analytics
 * 
 * 	DROP Portfolio Core implements libraries for the following:
 * 	- Asset Allocation Analytics
 *  - Asset Liability Management Analytics
 * 	- Capital Estimation Analytics
 * 	- Exposure Analytics
 * 	- Margin Analytics
 * 	- XVA Analytics
 * 
 * 	DROP Computational Core implements libraries for the following:
 * 	- Algorithm Support
 * 	- Computation Support
 * 	- Function Analysis
 *  - Model Validation
 * 	- Numerical Analysis
 * 	- Numerical Optimizer
 * 	- Spline Builder
 *  - Statistical Learning
 * 
 * 	Documentation for DROP is Spread Over:
 * 
 * 	- Main                     => https://lakshmidrip.github.io/DROP/
 * 	- Wiki                     => https://github.com/lakshmiDRIP/DROP/wiki
 * 	- GitHub                   => https://github.com/lakshmiDRIP/DROP
 * 	- Repo Layout Taxonomy     => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
 * 	- Javadoc                  => https://lakshmidrip.github.io/DROP/Javadoc/index.html
 * 	- Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
 * 	- Release Versions         => https://lakshmidrip.github.io/DROP/version.html
 * 	- Community Credits        => https://lakshmidrip.github.io/DROP/credits.html
 * 	- Issues Catalog           => https://github.com/lakshmiDRIP/DROP/issues
 * 	- JUnit                    => https://lakshmidrip.github.io/DROP/junit/index.html
 * 	- Jacoco                   => https://lakshmidrip.github.io/DROP/jacoco/index.html
 * 
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *   	you may not use this file except in compliance with the License.
 *   
 *  You may obtain a copy of the License at
 *  	http://www.apache.org/licenses/LICENSE-2.0
 *  
 *  Unless required by applicable law or agreed to in writing, software
 *  	distributed under the License is distributed on an "AS IS" BASIS,
 *  	WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  
 *  See the License for the specific language governing permissions and
 *  	limitations under the License.
 */

/**
 * <i>CovarianceEllipsoidMultivariate</i> implements a R<sup>d</sup> To R<sup>1</sup> Co-variance Estimate of
 * the specified Distribution.
 *
 *	<br><br>
 *  <ul>
 *		<li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
 *		<li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalAnalysisLibrary.md">Numerical Analysis Library</a></li>
 *		<li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/function/README.md">R<sup>d</sup> To R<sup>d</sup> Function Analysis</a></li>
 *		<li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/function/rdtor1/README.md">Built-in R<sup>d</sup> To R<sup>1</sup> Functions</a></li>
 *  </ul>
 *
 * @author Lakshmi Krishnamurthy
 */

public class CovarianceEllipsoidMultivariate extends org.drip.function.definition.RdToR1 {
	private double[][] _aadblCovarianceMatrix = null;

	/**
	 * CovarianceEllipsoidMultivariate Constructor
	 * 
	 * @param aadblCovarianceMatrix The Covariance Matrix
	 * 
	 * @throws java.lang.Exception Thrown if the Inputs are Invalid
	 */

	public CovarianceEllipsoidMultivariate (
		final double[][] aadblCovarianceMatrix)
		throws java.lang.Exception
	{
		super (null);

		if (null == (_aadblCovarianceMatrix = aadblCovarianceMatrix))
			throw new java.lang.Exception ("CovarianceEllipsoidMultivariate Constructor => Invalid Inputs");

		int iSize = _aadblCovarianceMatrix.length;

		if (0 == iSize)
			throw new java.lang.Exception ("CovarianceEllipsoidMultivariate Constructor => Invalid Inputs");

		for (int i = 0; i < iSize; ++i) {
			if (null == _aadblCovarianceMatrix[i] || iSize != _aadblCovarianceMatrix[i].length ||
				!org.drip.numerical.common.NumberUtil.IsValid (_aadblCovarianceMatrix[i]))
				throw new java.lang.Exception
					("CovarianceEllipsoidMultivariate Constructor => Invalid Inputs");
		}
	}

	/**
	 * Retrieve the Input Variate Dimension
	 * 
	 * @return The Input Variate Dimension
	 */

	public int dimension()
	{
		return _aadblCovarianceMatrix.length;
	}

	/**
	 * Retrieve the Co-variance Matrix
	 * 
	 * @return The Co-variance Matrix
	 */

	public double[][] covariance()
	{
		return _aadblCovarianceMatrix;
	}

	@Override public double evaluate (
		final double[] adblVariate)
		throws java.lang.Exception
	{
		if (null == adblVariate || !org.drip.numerical.common.NumberUtil.IsValid (adblVariate))
			throw new java.lang.Exception ("CovarianceEllipsoidMultivariate::evaluate => Invalid Inputs");

		double dblCovariance = 0.;
		int iDimension = adblVariate.length;

		if (iDimension != dimension())
			throw new java.lang.Exception ("CovarianceEllipsoidMultivariate::evaluate => Invalid Inputs");

		for (int i = 0; i < iDimension; ++i) {
			for (int j = 0; j < iDimension; ++j)
				dblCovariance += adblVariate[i] * _aadblCovarianceMatrix[i][j] * adblVariate[j];
		}

		return dblCovariance;
	}

	@Override public double[] jacobian (
		final double[] adblVariate)
	{
		if (null == adblVariate || !org.drip.numerical.common.NumberUtil.IsValid (adblVariate)) return null;

		int iDimension = adblVariate.length;
		double[] adblJacobian = new double[iDimension];

		if (iDimension != dimension()) return null;

		for (int i = 0; i < iDimension; ++i) {
			adblJacobian[i] = 0.;

			for (int j = 0; j < iDimension; ++j)
				adblJacobian[i] += 2. * _aadblCovarianceMatrix[i][j] * adblVariate[j];
		}

		return adblJacobian;
	}

	@Override public double[][] hessian (
		final double[] adblVariate)
	{
		int iDimension = dimension();

		double[][] aadblHessian = new double[iDimension][iDimension];

		for (int i = 0; i < iDimension; ++i) {
			for (int j = 0; j < iDimension; ++j)
				aadblHessian[i][j] += 2. * _aadblCovarianceMatrix[i][j];
		}

		return aadblHessian;
	}
}