CovarianceEllipsoidMultivariate.java

  1. package org.drip.function.rdtor1;

  2. /*
  3.  * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
  4.  */

  5. /*!
  6.  * Copyright (C) 2020 Lakshmi Krishnamurthy
  7.  * Copyright (C) 2019 Lakshmi Krishnamurthy
  8.  * Copyright (C) 2018 Lakshmi Krishnamurthy
  9.  * Copyright (C) 2017 Lakshmi Krishnamurthy
  10.  * Copyright (C) 2016 Lakshmi Krishnamurthy
  11.  *
  12.  *  This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
  13.  *      asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
  14.  *      analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
  15.  *      equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
  16.  *      numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
  17.  *      and computational support.
  18.  *  
  19.  *      https://lakshmidrip.github.io/DROP/
  20.  *  
  21.  *  DROP is composed of three modules:
  22.  *  
  23.  *  - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
  24.  *  - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
  25.  *  - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
  26.  *
  27.  *  DROP Product Core implements libraries for the following:
  28.  *  - Fixed Income Analytics
  29.  *  - Loan Analytics
  30.  *  - Transaction Cost Analytics
  31.  *
  32.  *  DROP Portfolio Core implements libraries for the following:
  33.  *  - Asset Allocation Analytics
  34.  *  - Asset Liability Management Analytics
  35.  *  - Capital Estimation Analytics
  36.  *  - Exposure Analytics
  37.  *  - Margin Analytics
  38.  *  - XVA Analytics
  39.  *
  40.  *  DROP Computational Core implements libraries for the following:
  41.  *  - Algorithm Support
  42.  *  - Computation Support
  43.  *  - Function Analysis
  44.  *  - Model Validation
  45.  *  - Numerical Analysis
  46.  *  - Numerical Optimizer
  47.  *  - Spline Builder
  48.  *  - Statistical Learning
  49.  *
  50.  *  Documentation for DROP is Spread Over:
  51.  *
  52.  *  - Main                     => https://lakshmidrip.github.io/DROP/
  53.  *  - Wiki                     => https://github.com/lakshmiDRIP/DROP/wiki
  54.  *  - GitHub                   => https://github.com/lakshmiDRIP/DROP
  55.  *  - Repo Layout Taxonomy     => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
  56.  *  - Javadoc                  => https://lakshmidrip.github.io/DROP/Javadoc/index.html
  57.  *  - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
  58.  *  - Release Versions         => https://lakshmidrip.github.io/DROP/version.html
  59.  *  - Community Credits        => https://lakshmidrip.github.io/DROP/credits.html
  60.  *  - Issues Catalog           => https://github.com/lakshmiDRIP/DROP/issues
  61.  *  - JUnit                    => https://lakshmidrip.github.io/DROP/junit/index.html
  62.  *  - Jacoco                   => https://lakshmidrip.github.io/DROP/jacoco/index.html
  63.  *
  64.  *  Licensed under the Apache License, Version 2.0 (the "License");
  65.  *      you may not use this file except in compliance with the License.
  66.  *  
  67.  *  You may obtain a copy of the License at
  68.  *      http://www.apache.org/licenses/LICENSE-2.0
  69.  *  
  70.  *  Unless required by applicable law or agreed to in writing, software
  71.  *      distributed under the License is distributed on an "AS IS" BASIS,
  72.  *      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  73.  *  
  74.  *  See the License for the specific language governing permissions and
  75.  *      limitations under the License.
  76.  */

  77. /**
  78.  * <i>CovarianceEllipsoidMultivariate</i> implements a R<sup>d</sup> To R<sup>1</sup> Co-variance Estimate of
  79.  * the specified Distribution.
  80.  *
  81.  *  <br><br>
  82.  *  <ul>
  83.  *      <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
  84.  *      <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalAnalysisLibrary.md">Numerical Analysis Library</a></li>
  85.  *      <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/function/README.md">R<sup>d</sup> To R<sup>d</sup> Function Analysis</a></li>
  86.  *      <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/function/rdtor1/README.md">Built-in R<sup>d</sup> To R<sup>1</sup> Functions</a></li>
  87.  *  </ul>
  88.  *
  89.  * @author Lakshmi Krishnamurthy
  90.  */

  91. public class CovarianceEllipsoidMultivariate extends org.drip.function.definition.RdToR1 {
  92.     private double[][] _aadblCovarianceMatrix = null;

  93.     /**
  94.      * CovarianceEllipsoidMultivariate Constructor
  95.      *
  96.      * @param aadblCovarianceMatrix The Covariance Matrix
  97.      *
  98.      * @throws java.lang.Exception Thrown if the Inputs are Invalid
  99.      */

  100.     public CovarianceEllipsoidMultivariate (
  101.         final double[][] aadblCovarianceMatrix)
  102.         throws java.lang.Exception
  103.     {
  104.         super (null);

  105.         if (null == (_aadblCovarianceMatrix = aadblCovarianceMatrix))
  106.             throw new java.lang.Exception ("CovarianceEllipsoidMultivariate Constructor => Invalid Inputs");

  107.         int iSize = _aadblCovarianceMatrix.length;

  108.         if (0 == iSize)
  109.             throw new java.lang.Exception ("CovarianceEllipsoidMultivariate Constructor => Invalid Inputs");

  110.         for (int i = 0; i < iSize; ++i) {
  111.             if (null == _aadblCovarianceMatrix[i] || iSize != _aadblCovarianceMatrix[i].length ||
  112.                 !org.drip.numerical.common.NumberUtil.IsValid (_aadblCovarianceMatrix[i]))
  113.                 throw new java.lang.Exception
  114.                     ("CovarianceEllipsoidMultivariate Constructor => Invalid Inputs");
  115.         }
  116.     }

  117.     /**
  118.      * Retrieve the Input Variate Dimension
  119.      *
  120.      * @return The Input Variate Dimension
  121.      */

  122.     public int dimension()
  123.     {
  124.         return _aadblCovarianceMatrix.length;
  125.     }

  126.     /**
  127.      * Retrieve the Co-variance Matrix
  128.      *
  129.      * @return The Co-variance Matrix
  130.      */

  131.     public double[][] covariance()
  132.     {
  133.         return _aadblCovarianceMatrix;
  134.     }

  135.     @Override public double evaluate (
  136.         final double[] adblVariate)
  137.         throws java.lang.Exception
  138.     {
  139.         if (null == adblVariate || !org.drip.numerical.common.NumberUtil.IsValid (adblVariate))
  140.             throw new java.lang.Exception ("CovarianceEllipsoidMultivariate::evaluate => Invalid Inputs");

  141.         double dblCovariance = 0.;
  142.         int iDimension = adblVariate.length;

  143.         if (iDimension != dimension())
  144.             throw new java.lang.Exception ("CovarianceEllipsoidMultivariate::evaluate => Invalid Inputs");

  145.         for (int i = 0; i < iDimension; ++i) {
  146.             for (int j = 0; j < iDimension; ++j)
  147.                 dblCovariance += adblVariate[i] * _aadblCovarianceMatrix[i][j] * adblVariate[j];
  148.         }

  149.         return dblCovariance;
  150.     }

  151.     @Override public double[] jacobian (
  152.         final double[] adblVariate)
  153.     {
  154.         if (null == adblVariate || !org.drip.numerical.common.NumberUtil.IsValid (adblVariate)) return null;

  155.         int iDimension = adblVariate.length;
  156.         double[] adblJacobian = new double[iDimension];

  157.         if (iDimension != dimension()) return null;

  158.         for (int i = 0; i < iDimension; ++i) {
  159.             adblJacobian[i] = 0.;

  160.             for (int j = 0; j < iDimension; ++j)
  161.                 adblJacobian[i] += 2. * _aadblCovarianceMatrix[i][j] * adblVariate[j];
  162.         }

  163.         return adblJacobian;
  164.     }

  165.     @Override public double[][] hessian (
  166.         final double[] adblVariate)
  167.     {
  168.         int iDimension = dimension();

  169.         double[][] aadblHessian = new double[iDimension][iDimension];

  170.         for (int i = 0; i < iDimension; ++i) {
  171.             for (int j = 0; j < iDimension; ++j)
  172.                 aadblHessian[i][j] += 2. * _aadblCovarianceMatrix[i][j];
  173.         }

  174.         return aadblHessian;
  175.     }
  176. }