LagrangianMultivariate.java
package org.drip.function.rdtor1;
/*
* -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*/
/*!
* Copyright (C) 2020 Lakshmi Krishnamurthy
* Copyright (C) 2019 Lakshmi Krishnamurthy
* Copyright (C) 2018 Lakshmi Krishnamurthy
* Copyright (C) 2017 Lakshmi Krishnamurthy
* Copyright (C) 2016 Lakshmi Krishnamurthy
*
* This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
* asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
* analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
* equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
* numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
* and computational support.
*
* https://lakshmidrip.github.io/DROP/
*
* DROP is composed of three modules:
*
* - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
* - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
* - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
*
* DROP Product Core implements libraries for the following:
* - Fixed Income Analytics
* - Loan Analytics
* - Transaction Cost Analytics
*
* DROP Portfolio Core implements libraries for the following:
* - Asset Allocation Analytics
* - Asset Liability Management Analytics
* - Capital Estimation Analytics
* - Exposure Analytics
* - Margin Analytics
* - XVA Analytics
*
* DROP Computational Core implements libraries for the following:
* - Algorithm Support
* - Computation Support
* - Function Analysis
* - Model Validation
* - Numerical Analysis
* - Numerical Optimizer
* - Spline Builder
* - Statistical Learning
*
* Documentation for DROP is Spread Over:
*
* - Main => https://lakshmidrip.github.io/DROP/
* - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
* - GitHub => https://github.com/lakshmiDRIP/DROP
* - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
* - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
* - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
* - Release Versions => https://lakshmidrip.github.io/DROP/version.html
* - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
* - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
* - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
* - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
*
* You may obtain a copy of the License at
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* <i>LagrangianMultivariate</i> implements a R<sup>d</sup> To R<sup>1</sup> Multivariate Function along
* with the specified Set of Equality Constraints.
*
* <br><br>
* <ul>
* <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
* <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalAnalysisLibrary.md">Numerical Analysis Library</a></li>
* <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/function/README.md">R<sup>d</sup> To R<sup>d</sup> Function Analysis</a></li>
* <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/function/rdtor1/README.md">Built-in R<sup>d</sup> To R<sup>1</sup> Functions</a></li>
* </ul>
*
* @author Lakshmi Krishnamurthy
*/
public class LagrangianMultivariate extends org.drip.function.definition.RdToR1 {
private org.drip.function.definition.RdToR1 _RdToR1Objective = null;
private org.drip.function.definition.RdToR1[] _aRdToR1EqualityConstraint = null;
/**
* LagrangianMultivariate Constructor
*
* @param RdToR1Objective The Objective Function
* @param aRdToR1EqualityConstraint Array of Equality Constraint Functions
*
* @throws java.lang.Exception Thrown if the Inputs are Invalid
*/
public LagrangianMultivariate (
final org.drip.function.definition.RdToR1 RdToR1Objective,
final org.drip.function.definition.RdToR1[] aRdToR1EqualityConstraint)
throws java.lang.Exception
{
super (null);
if (null == (_RdToR1Objective = RdToR1Objective))
throw new java.lang.Exception ("LagrangianMultivariate Constructor => Invalid Inputs");
_aRdToR1EqualityConstraint = aRdToR1EqualityConstraint;
}
/**
* Retrieve the Objective R^d To R^1 Function Instance
*
* @return The Objective R^d To R^1 Function Instance
*/
public org.drip.function.definition.RdToR1 objectiveFunction()
{
return _RdToR1Objective;
}
/**
* Retrieve the Array of the Constraint R^d To R^1 Function Instances
*
* @return The Array of Constraint R^d To R^1 Function Instances
*/
public org.drip.function.definition.RdToR1[] constraintFunctions()
{
return _aRdToR1EqualityConstraint;
}
/**
* Retrieve the Objective Function Dimension
*
* @return The Objective Function Dimension
*/
public int objectiveFunctionDimension()
{
return _RdToR1Objective.dimension();
}
/**
* Retrieve the Constraint Function Dimension
*
* @return The Constraint Function Dimension
*/
public int constraintFunctionDimension()
{
return null == _aRdToR1EqualityConstraint ? 0 : _aRdToR1EqualityConstraint.length;
}
@Override public int dimension()
{
return objectiveFunctionDimension() + constraintFunctionDimension();
}
@Override public double evaluate (
final double[] adblVariate)
throws java.lang.Exception
{
org.drip.function.rdtor1.ObjectiveConstraintVariateSet ocvs =
org.drip.function.rdtor1.ObjectiveConstraintVariateSet.Partition (adblVariate,
objectiveFunctionDimension());
if (null == ocvs)
throw new java.lang.Exception ("LagrangianMultivariate::evaluate => Invalid Inputs");
double[] adblConstraintVariate = ocvs.constraintVariates();
double[] adblObjectiveVariate = ocvs.objectiveVariates();
int iNumConstraint = adblConstraintVariate.length;
double dblValue = _RdToR1Objective.evaluate (adblObjectiveVariate);
for (int i = 0; i < iNumConstraint; ++i)
dblValue += adblConstraintVariate[i] * _aRdToR1EqualityConstraint[i].evaluate
(adblObjectiveVariate);
return dblValue;
}
@Override public double[] jacobian (
final double[] adblVariate)
{
int iObjectiveDimension = objectiveFunctionDimension();
int iConstraintDimension = constraintFunctionDimension();
double[] adblObjectiveVariate = null;
double[] adblConstraintVariate = null;
double[][] aadblConstraintJacobian = null;
double[] adblJacobian = new double[iObjectiveDimension + iConstraintDimension];
if (0 == iConstraintDimension)
adblObjectiveVariate = adblVariate;
else {
org.drip.function.rdtor1.ObjectiveConstraintVariateSet ocvs =
org.drip.function.rdtor1.ObjectiveConstraintVariateSet.Partition (adblVariate,
iObjectiveDimension);
if (null == ocvs) return null;
adblObjectiveVariate = ocvs.objectiveVariates();
adblConstraintVariate = ocvs.constraintVariates();
}
double[] adblObjectiveJacobian = _RdToR1Objective.jacobian (adblObjectiveVariate);
if (null == adblObjectiveJacobian) return null;
if (0 != iConstraintDimension) aadblConstraintJacobian = new double[iConstraintDimension][];
for (int i = 0; i < iConstraintDimension; ++i) {
if (null == (aadblConstraintJacobian[i] = _aRdToR1EqualityConstraint[i].jacobian
(adblObjectiveVariate)))
return null;
try {
adblJacobian[iObjectiveDimension + i] = _aRdToR1EqualityConstraint[i].evaluate
(adblObjectiveVariate);
} catch (java.lang.Exception e) {
e.printStackTrace();
return null;
}
}
for (int i = 0; i < iObjectiveDimension; ++i) {
adblJacobian[i] = adblObjectiveJacobian[i];
for (int j = 0; j < iConstraintDimension; ++j)
adblJacobian[i] += adblConstraintVariate[j] * aadblConstraintJacobian[j][i];
}
return adblJacobian;
}
@Override public double[][] hessian (
final double[] adblVariate)
{
int iObjectiveDimension = objectiveFunctionDimension();
int iConstraintDimension = constraintFunctionDimension();
double[] adblObjectiveVariate = null;
double[] adblConstraintVariate = null;
if (0 == iConstraintDimension)
adblObjectiveVariate = adblVariate;
else {
org.drip.function.rdtor1.ObjectiveConstraintVariateSet ocvs =
org.drip.function.rdtor1.ObjectiveConstraintVariateSet.Partition (adblVariate,
iObjectiveDimension);
if (null == ocvs) return null;
adblObjectiveVariate = ocvs.objectiveVariates();
adblConstraintVariate = ocvs.constraintVariates();
}
double[][] aadblObjectiveHessian = _RdToR1Objective.hessian (adblObjectiveVariate);
double[][] aadblConstraintJacobian = null;
double[][][] aaadblConstraintHessian = null;
int iDimension = iObjectiveDimension + iConstraintDimension;
double[][] aadblHessian = new double[iDimension][iDimension];
if (0 != iConstraintDimension) {
aadblConstraintJacobian = new double[iConstraintDimension][];
aaadblConstraintHessian = new double[iConstraintDimension][][];
}
for (int i = 0; i < iConstraintDimension; ++i) {
if (null == (aaadblConstraintHessian[i] = _aRdToR1EqualityConstraint[i].hessian
(adblObjectiveVariate)))
return null;
}
for (int i = 0; i < iObjectiveDimension; ++i) {
for (int j = 0; j < iObjectiveDimension; ++j) {
aadblHessian[i][j] = aadblObjectiveHessian[i][j];
for (int k = 0; k < iConstraintDimension; ++k)
aadblHessian[i][j] += adblConstraintVariate[k] * aaadblConstraintHessian[k][i][j];
}
}
for (int i = 0; i < iConstraintDimension; ++i) {
for (int j = 0; j < iConstraintDimension; ++j)
aadblHessian[i + iObjectiveDimension][j + iObjectiveDimension] = 0.;
if (null == (aadblConstraintJacobian[i] = _aRdToR1EqualityConstraint[i].jacobian
(adblObjectiveVariate)))
return null;
}
for (int i = 0; i < iConstraintDimension; ++i) {
for (int j = 0; j < iObjectiveDimension; ++j) {
aadblHessian[iObjectiveDimension + i][j] = aadblConstraintJacobian[i][j];
aadblHessian[j][iObjectiveDimension + i] = aadblConstraintJacobian[i][j];
}
}
return aadblHessian;
}
}