LagrangianMultivariate.java
- package org.drip.function.rdtor1;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2020 Lakshmi Krishnamurthy
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- * Copyright (C) 2018 Lakshmi Krishnamurthy
- * Copyright (C) 2017 Lakshmi Krishnamurthy
- * Copyright (C) 2016 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
- * asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
- * analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
- * equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
- * numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
- * and computational support.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three modules:
- *
- * - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
- *
- * DROP Product Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Loan Analytics
- * - Transaction Cost Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Asset Liability Management Analytics
- * - Capital Estimation Analytics
- * - Exposure Analytics
- * - Margin Analytics
- * - XVA Analytics
- *
- * DROP Computational Core implements libraries for the following:
- * - Algorithm Support
- * - Computation Support
- * - Function Analysis
- * - Model Validation
- * - Numerical Analysis
- * - Numerical Optimizer
- * - Spline Builder
- * - Statistical Learning
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>LagrangianMultivariate</i> implements a R<sup>d</sup> To R<sup>1</sup> Multivariate Function along
- * with the specified Set of Equality Constraints.
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalAnalysisLibrary.md">Numerical Analysis Library</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/function/README.md">R<sup>d</sup> To R<sup>d</sup> Function Analysis</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/function/rdtor1/README.md">Built-in R<sup>d</sup> To R<sup>1</sup> Functions</a></li>
- * </ul>
- *
- * @author Lakshmi Krishnamurthy
- */
- public class LagrangianMultivariate extends org.drip.function.definition.RdToR1 {
- private org.drip.function.definition.RdToR1 _RdToR1Objective = null;
- private org.drip.function.definition.RdToR1[] _aRdToR1EqualityConstraint = null;
- /**
- * LagrangianMultivariate Constructor
- *
- * @param RdToR1Objective The Objective Function
- * @param aRdToR1EqualityConstraint Array of Equality Constraint Functions
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public LagrangianMultivariate (
- final org.drip.function.definition.RdToR1 RdToR1Objective,
- final org.drip.function.definition.RdToR1[] aRdToR1EqualityConstraint)
- throws java.lang.Exception
- {
- super (null);
- if (null == (_RdToR1Objective = RdToR1Objective))
- throw new java.lang.Exception ("LagrangianMultivariate Constructor => Invalid Inputs");
- _aRdToR1EqualityConstraint = aRdToR1EqualityConstraint;
- }
- /**
- * Retrieve the Objective R^d To R^1 Function Instance
- *
- * @return The Objective R^d To R^1 Function Instance
- */
- public org.drip.function.definition.RdToR1 objectiveFunction()
- {
- return _RdToR1Objective;
- }
- /**
- * Retrieve the Array of the Constraint R^d To R^1 Function Instances
- *
- * @return The Array of Constraint R^d To R^1 Function Instances
- */
- public org.drip.function.definition.RdToR1[] constraintFunctions()
- {
- return _aRdToR1EqualityConstraint;
- }
- /**
- * Retrieve the Objective Function Dimension
- *
- * @return The Objective Function Dimension
- */
- public int objectiveFunctionDimension()
- {
- return _RdToR1Objective.dimension();
- }
- /**
- * Retrieve the Constraint Function Dimension
- *
- * @return The Constraint Function Dimension
- */
- public int constraintFunctionDimension()
- {
- return null == _aRdToR1EqualityConstraint ? 0 : _aRdToR1EqualityConstraint.length;
- }
- @Override public int dimension()
- {
- return objectiveFunctionDimension() + constraintFunctionDimension();
- }
- @Override public double evaluate (
- final double[] adblVariate)
- throws java.lang.Exception
- {
- org.drip.function.rdtor1.ObjectiveConstraintVariateSet ocvs =
- org.drip.function.rdtor1.ObjectiveConstraintVariateSet.Partition (adblVariate,
- objectiveFunctionDimension());
- if (null == ocvs)
- throw new java.lang.Exception ("LagrangianMultivariate::evaluate => Invalid Inputs");
- double[] adblConstraintVariate = ocvs.constraintVariates();
- double[] adblObjectiveVariate = ocvs.objectiveVariates();
- int iNumConstraint = adblConstraintVariate.length;
- double dblValue = _RdToR1Objective.evaluate (adblObjectiveVariate);
- for (int i = 0; i < iNumConstraint; ++i)
- dblValue += adblConstraintVariate[i] * _aRdToR1EqualityConstraint[i].evaluate
- (adblObjectiveVariate);
- return dblValue;
- }
- @Override public double[] jacobian (
- final double[] adblVariate)
- {
- int iObjectiveDimension = objectiveFunctionDimension();
- int iConstraintDimension = constraintFunctionDimension();
- double[] adblObjectiveVariate = null;
- double[] adblConstraintVariate = null;
- double[][] aadblConstraintJacobian = null;
- double[] adblJacobian = new double[iObjectiveDimension + iConstraintDimension];
- if (0 == iConstraintDimension)
- adblObjectiveVariate = adblVariate;
- else {
- org.drip.function.rdtor1.ObjectiveConstraintVariateSet ocvs =
- org.drip.function.rdtor1.ObjectiveConstraintVariateSet.Partition (adblVariate,
- iObjectiveDimension);
- if (null == ocvs) return null;
- adblObjectiveVariate = ocvs.objectiveVariates();
- adblConstraintVariate = ocvs.constraintVariates();
- }
- double[] adblObjectiveJacobian = _RdToR1Objective.jacobian (adblObjectiveVariate);
- if (null == adblObjectiveJacobian) return null;
- if (0 != iConstraintDimension) aadblConstraintJacobian = new double[iConstraintDimension][];
- for (int i = 0; i < iConstraintDimension; ++i) {
- if (null == (aadblConstraintJacobian[i] = _aRdToR1EqualityConstraint[i].jacobian
- (adblObjectiveVariate)))
- return null;
- try {
- adblJacobian[iObjectiveDimension + i] = _aRdToR1EqualityConstraint[i].evaluate
- (adblObjectiveVariate);
- } catch (java.lang.Exception e) {
- e.printStackTrace();
- return null;
- }
- }
- for (int i = 0; i < iObjectiveDimension; ++i) {
- adblJacobian[i] = adblObjectiveJacobian[i];
- for (int j = 0; j < iConstraintDimension; ++j)
- adblJacobian[i] += adblConstraintVariate[j] * aadblConstraintJacobian[j][i];
- }
- return adblJacobian;
- }
- @Override public double[][] hessian (
- final double[] adblVariate)
- {
- int iObjectiveDimension = objectiveFunctionDimension();
- int iConstraintDimension = constraintFunctionDimension();
- double[] adblObjectiveVariate = null;
- double[] adblConstraintVariate = null;
- if (0 == iConstraintDimension)
- adblObjectiveVariate = adblVariate;
- else {
- org.drip.function.rdtor1.ObjectiveConstraintVariateSet ocvs =
- org.drip.function.rdtor1.ObjectiveConstraintVariateSet.Partition (adblVariate,
- iObjectiveDimension);
- if (null == ocvs) return null;
- adblObjectiveVariate = ocvs.objectiveVariates();
- adblConstraintVariate = ocvs.constraintVariates();
- }
- double[][] aadblObjectiveHessian = _RdToR1Objective.hessian (adblObjectiveVariate);
- double[][] aadblConstraintJacobian = null;
- double[][][] aaadblConstraintHessian = null;
- int iDimension = iObjectiveDimension + iConstraintDimension;
- double[][] aadblHessian = new double[iDimension][iDimension];
- if (0 != iConstraintDimension) {
- aadblConstraintJacobian = new double[iConstraintDimension][];
- aaadblConstraintHessian = new double[iConstraintDimension][][];
- }
- for (int i = 0; i < iConstraintDimension; ++i) {
- if (null == (aaadblConstraintHessian[i] = _aRdToR1EqualityConstraint[i].hessian
- (adblObjectiveVariate)))
- return null;
- }
- for (int i = 0; i < iObjectiveDimension; ++i) {
- for (int j = 0; j < iObjectiveDimension; ++j) {
- aadblHessian[i][j] = aadblObjectiveHessian[i][j];
- for (int k = 0; k < iConstraintDimension; ++k)
- aadblHessian[i][j] += adblConstraintVariate[k] * aaadblConstraintHessian[k][i][j];
- }
- }
- for (int i = 0; i < iConstraintDimension; ++i) {
- for (int j = 0; j < iConstraintDimension; ++j)
- aadblHessian[i + iObjectiveDimension][j + iObjectiveDimension] = 0.;
- if (null == (aadblConstraintJacobian[i] = _aRdToR1EqualityConstraint[i].jacobian
- (adblObjectiveVariate)))
- return null;
- }
- for (int i = 0; i < iConstraintDimension; ++i) {
- for (int j = 0; j < iObjectiveDimension; ++j) {
- aadblHessian[iObjectiveDimension + i][j] = aadblConstraintJacobian[i][j];
- aadblHessian[j][iObjectiveDimension + i] = aadblConstraintJacobian[i][j];
- }
- }
- return aadblHessian;
- }
- }