RiskObjectiveUtilityMultivariate.java

  1. package org.drip.function.rdtor1;

  2. /*
  3.  * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
  4.  */

  5. /*!
  6.  * Copyright (C) 2020 Lakshmi Krishnamurthy
  7.  * Copyright (C) 2019 Lakshmi Krishnamurthy
  8.  * Copyright (C) 2018 Lakshmi Krishnamurthy
  9.  * Copyright (C) 2017 Lakshmi Krishnamurthy
  10.  * Copyright (C) 2016 Lakshmi Krishnamurthy
  11.  *
  12.  *  This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
  13.  *      asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
  14.  *      analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
  15.  *      equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
  16.  *      numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
  17.  *      and computational support.
  18.  *  
  19.  *      https://lakshmidrip.github.io/DROP/
  20.  *  
  21.  *  DROP is composed of three modules:
  22.  *  
  23.  *  - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
  24.  *  - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
  25.  *  - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
  26.  *
  27.  *  DROP Product Core implements libraries for the following:
  28.  *  - Fixed Income Analytics
  29.  *  - Loan Analytics
  30.  *  - Transaction Cost Analytics
  31.  *
  32.  *  DROP Portfolio Core implements libraries for the following:
  33.  *  - Asset Allocation Analytics
  34.  *  - Asset Liability Management Analytics
  35.  *  - Capital Estimation Analytics
  36.  *  - Exposure Analytics
  37.  *  - Margin Analytics
  38.  *  - XVA Analytics
  39.  *
  40.  *  DROP Computational Core implements libraries for the following:
  41.  *  - Algorithm Support
  42.  *  - Computation Support
  43.  *  - Function Analysis
  44.  *  - Model Validation
  45.  *  - Numerical Analysis
  46.  *  - Numerical Optimizer
  47.  *  - Spline Builder
  48.  *  - Statistical Learning
  49.  *
  50.  *  Documentation for DROP is Spread Over:
  51.  *
  52.  *  - Main                     => https://lakshmidrip.github.io/DROP/
  53.  *  - Wiki                     => https://github.com/lakshmiDRIP/DROP/wiki
  54.  *  - GitHub                   => https://github.com/lakshmiDRIP/DROP
  55.  *  - Repo Layout Taxonomy     => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
  56.  *  - Javadoc                  => https://lakshmidrip.github.io/DROP/Javadoc/index.html
  57.  *  - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
  58.  *  - Release Versions         => https://lakshmidrip.github.io/DROP/version.html
  59.  *  - Community Credits        => https://lakshmidrip.github.io/DROP/credits.html
  60.  *  - Issues Catalog           => https://github.com/lakshmiDRIP/DROP/issues
  61.  *  - JUnit                    => https://lakshmidrip.github.io/DROP/junit/index.html
  62.  *  - Jacoco                   => https://lakshmidrip.github.io/DROP/jacoco/index.html
  63.  *
  64.  *  Licensed under the Apache License, Version 2.0 (the "License");
  65.  *      you may not use this file except in compliance with the License.
  66.  *  
  67.  *  You may obtain a copy of the License at
  68.  *      http://www.apache.org/licenses/LICENSE-2.0
  69.  *  
  70.  *  Unless required by applicable law or agreed to in writing, software
  71.  *      distributed under the License is distributed on an "AS IS" BASIS,
  72.  *      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  73.  *  
  74.  *  See the License for the specific language governing permissions and
  75.  *      limitations under the License.
  76.  */

  77. /**
  78.  * <i>RiskObjectiveUtilityMultivariate</i> implements the Risk Objective R<sup>d</sup> To R<sup>1</sup>
  79.  * Multivariate Function used in Portfolio Allocation. It accommodates both the Risk Tolerance and Risk
  80.  * Aversion Variants.
  81.  *
  82.  *  <br><br>
  83.  *  <ul>
  84.  *      <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
  85.  *      <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalAnalysisLibrary.md">Numerical Analysis Library</a></li>
  86.  *      <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/function/README.md">R<sup>d</sup> To R<sup>d</sup> Function Analysis</a></li>
  87.  *      <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/function/rdtor1/README.md">Built-in R<sup>d</sup> To R<sup>1</sup> Functions</a></li>
  88.  *  </ul>
  89.  *
  90.  * @author Lakshmi Krishnamurthy
  91.  */

  92. public class RiskObjectiveUtilityMultivariate extends org.drip.function.definition.RdToR1 {
  93.     private double[] _adblExpectedReturns = null;
  94.     private double[][] _aadblCovarianceMatrix = null;
  95.     private double _dblRiskFreeRate = java.lang.Double.NaN;
  96.     private double _dblRiskAversion = java.lang.Double.NaN;
  97.     private double _dblRiskTolerance = java.lang.Double.NaN;

  98.     /**
  99.      * RiskObjectiveUtilityMultivariate Constructor
  100.      *
  101.      * @param aadblCovarianceMatrix The Co-variance Matrix Double Array
  102.      * @param adblExpectedReturns Array of Expected Returns
  103.      * @param dblRiskAversion The Risk Aversion Parameter
  104.      * @param dblRiskTolerance The Risk Tolerance Parameter
  105.      * @param dblRiskFreeRate The Risk Free Rate
  106.      *
  107.      * @throws java.lang.Exception Thrown if the Inputs are Invalid
  108.      */

  109.     public RiskObjectiveUtilityMultivariate (
  110.         final double[][] aadblCovarianceMatrix,
  111.         final double[] adblExpectedReturns,
  112.         final double dblRiskAversion,
  113.         final double dblRiskTolerance,
  114.         final double dblRiskFreeRate)
  115.         throws java.lang.Exception
  116.     {
  117.         super (null);

  118.         if (null == (_aadblCovarianceMatrix = aadblCovarianceMatrix) || null == (_adblExpectedReturns =
  119.             adblExpectedReturns) || !org.drip.numerical.common.NumberUtil.IsValid (_dblRiskAversion =
  120.                 dblRiskAversion) || !org.drip.numerical.common.NumberUtil.IsValid (_dblRiskTolerance =
  121.                     dblRiskTolerance) || !org.drip.numerical.common.NumberUtil.IsValid (_dblRiskFreeRate =
  122.                         dblRiskFreeRate))
  123.             throw new java.lang.Exception ("RiskObjectiveUtilityMultivariate Constructor => Invalid Inputs");

  124.         int iSize = _aadblCovarianceMatrix.length;

  125.         if (0 == iSize || iSize != _adblExpectedReturns.length)
  126.             throw new java.lang.Exception ("RiskObjectiveUtilityMultivariate Constructor => Invalid Inputs");

  127.         for (int i = 0; i < iSize; ++i) {
  128.             if (null == _aadblCovarianceMatrix[i] || iSize != _aadblCovarianceMatrix[i].length ||
  129.                 !org.drip.numerical.common.NumberUtil.IsValid (_aadblCovarianceMatrix[i]) ||
  130.                     !org.drip.numerical.common.NumberUtil.IsValid (_adblExpectedReturns[i]))
  131.                 throw new java.lang.Exception
  132.                     ("RiskObjectiveUtilityMultivariate Constructor => Invalid Inputs");
  133.         }
  134.     }

  135.     /**
  136.      * Retrieve the Input Variate Dimension
  137.      *
  138.      * @return The Input Variate Dimension
  139.      */

  140.     public int dimension()
  141.     {
  142.         return _aadblCovarianceMatrix.length;
  143.     }

  144.     /**
  145.      * Retrieve the Co-variance Matrix
  146.      *
  147.      * @return The Co-variance Matrix
  148.      */

  149.     public double[][] covariance()
  150.     {
  151.         return _aadblCovarianceMatrix;
  152.     }

  153.     /**
  154.      * Retrieve the Array of Expected Returns
  155.      *
  156.      * @return The Array of Expected Returns
  157.      */

  158.     public double[] expectedReturns()
  159.     {
  160.         return _adblExpectedReturns;
  161.     }

  162.     /**
  163.      * Retrieve the Risk Aversion Factor
  164.      *
  165.      * @return The Risk Aversion Factor
  166.      */

  167.     public double riskAversion()
  168.     {
  169.         return _dblRiskAversion;
  170.     }

  171.     /**
  172.      * Retrieve the Risk Tolerance Factor
  173.      *
  174.      * @return The Risk Tolerance Factor
  175.      */

  176.     public double riskTolerance()
  177.     {
  178.         return _dblRiskTolerance;
  179.     }

  180.     /**
  181.      * Retrieve the Risk Free Rate
  182.      *
  183.      * @return The Risk Free Rate
  184.      */

  185.     public double riskFreeRate()
  186.     {
  187.         return _dblRiskFreeRate;
  188.     }

  189.     @Override public double evaluate (
  190.         final double[] adblVariate)
  191.         throws java.lang.Exception
  192.     {
  193.         if (null == adblVariate || !org.drip.numerical.common.NumberUtil.IsValid (adblVariate))
  194.             throw new java.lang.Exception ("RiskObjectiveUtilityMultivariate::evaluate => Invalid Inputs");

  195.         double dblValue = 0.;
  196.         int iDimension = adblVariate.length;

  197.         if (iDimension != dimension())
  198.             throw new java.lang.Exception ("RiskObjectiveUtilityMultivariate::evaluate => Invalid Inputs");

  199.         for (int i = 0; i < iDimension; ++i) {
  200.             dblValue -= _dblRiskTolerance * adblVariate[i] * (_adblExpectedReturns[i] - _dblRiskFreeRate);

  201.             for (int j = 0; j < iDimension; ++j)
  202.                 dblValue += 0.5 * _dblRiskAversion * adblVariate[i] * _aadblCovarianceMatrix[i][j] *
  203.                     adblVariate[j];
  204.         }

  205.         return dblValue;
  206.     }

  207.     @Override public double[] jacobian (
  208.         final double[] adblVariate)
  209.     {
  210.         if (null == adblVariate || !org.drip.numerical.common.NumberUtil.IsValid (adblVariate)) return null;

  211.         int iDimension = adblVariate.length;
  212.         double[] adblJacobian = new double[iDimension];

  213.         if (iDimension != dimension()) return null;

  214.         for (int i = 0; i < iDimension; ++i) {
  215.             adblJacobian[i] = -1. * _dblRiskTolerance * (_adblExpectedReturns[i] - _dblRiskFreeRate);

  216.             for (int j = 0; j < iDimension; ++j)
  217.                 adblJacobian[i] += _dblRiskAversion * _aadblCovarianceMatrix[i][j] * adblVariate[j];
  218.         }

  219.         return adblJacobian;
  220.     }

  221.     @Override public double[][] hessian (
  222.         final double[] adblVariate)
  223.     {
  224.         int iDimension = dimension();

  225.         double[][] aadblHessian = new double[iDimension][iDimension];

  226.         for (int i = 0; i < iDimension; ++i) {
  227.             for (int j = 0; j < iDimension; ++j)
  228.                 aadblHessian[i][j] += _dblRiskAversion * _aadblCovarianceMatrix[i][j];
  229.         }

  230.         return aadblHessian;
  231.     }
  232. }