CoveringNumberLossBound.java
- package org.drip.learning.bound;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2020 Lakshmi Krishnamurthy
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- * Copyright (C) 2018 Lakshmi Krishnamurthy
- * Copyright (C) 2017 Lakshmi Krishnamurthy
- * Copyright (C) 2016 Lakshmi Krishnamurthy
- * Copyright (C) 2015 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
- * asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
- * analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
- * equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
- * numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
- * and computational support.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three modules:
- *
- * - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
- *
- * DROP Product Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Loan Analytics
- * - Transaction Cost Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Asset Liability Management Analytics
- * - Capital Estimation Analytics
- * - Exposure Analytics
- * - Margin Analytics
- * - XVA Analytics
- *
- * DROP Computational Core implements libraries for the following:
- * - Algorithm Support
- * - Computation Support
- * - Function Analysis
- * - Model Validation
- * - Numerical Analysis
- * - Numerical Optimizer
- * - Spline Builder
- * - Statistical Learning
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>CoveringNumberLossBound provides</i> the Upper Probability Bound that the Loss/Deviation of the
- * Empirical from the Actual Mean of the given Learner Class exceeds 'epsilon', using the Covering Number
- * Generalization Bounds. This is expressed as
- * <br><br>
- * C1 (n) * N (epsilon, n) * exp (-n.epsilon^b/C2)
- * <br><br>
- * where:
- * <ul>
- * <li>
- * n is the Size of the Sample
- * </li>
- * <li>
- * 'epsilon' is the Deviation Empirical Mean from the Population Mean
- * </li>
- * <li>
- * C1 (n) is the sample coefficient function
- * </li>
- * <li>
- * C2 is an exponent scaling constant
- * </li>
- * <li>
- * 'b' an exponent ((i.e., the Epsilon Exponent) that depends on the setting (i.e.,
- * agnostic/classification/regression/convex etc)
- * </li>
- * </ul>
- * <br><br>
- *
- * The References are:
- *
- * <br><br>
- * <ul>
- * <li>
- * Alon, N., S. Ben-David, N. Cesa Bianchi, and D. Haussler (1997): Scale-sensitive Dimensions, Uniform
- * Convergence, and Learnability <i>Journal of Association of Computational Machinery</i> <b>44
- * (4)</b> 615-631
- * </li>
- * <li>
- * Anthony, M., and P. L. Bartlett (1999): <i>Artificial Neural Network Learning - Theoretical
- * Foundations</i> <b>Cambridge University Press</b> Cambridge, UK
- * </li>
- * <li>
- * Kearns, M. J., R. E. Schapire, and L. M. Sellie (1994): <i>Towards Efficient Agnostic Learning</i>
- * Machine Learning <b>17 (2)</b> 115-141
- * </li>
- * <li>
- * Lee, W. S., P. L. Bartlett, and R. C. Williamson (1998): The Importance of Convexity in Learning with
- * Squared Loss <i>IEEE Transactions on Information Theory</i> <b>44</b> 1974-1980
- * </li>
- * <li>
- * Vapnik, V. N. (1998): <i>Statistical learning Theory</i> <b>Wiley</b> New York
- * </li>
- * </ul>
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/StatisticalLearningLibrary.md">Statistical Learning</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/learning">Agnostic Learning Bounds under Empirical Loss Minimization Schemes</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/learning/bound">Covering Numbers, Concentration, Lipschitz Bounds</a></li>
- * </ul>
- *
- * @author Lakshmi Krishnamurthy
- */
- public class CoveringNumberLossBound {
- private double _dblExponentScaler = java.lang.Double.NaN;
- private double _dblEpsilonExponent = java.lang.Double.NaN;
- private org.drip.function.definition.R1ToR1 _funcSampleCoefficient = null;
- /**
- * CoveringNumberLossBound Constructor
- *
- * @param funcSampleCoefficient The Sample Coefficient Function
- * @param dblEpsilonExponent The Epsilon Exponent
- * @param dblExponentScaler The Exponent Scaler
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public CoveringNumberLossBound (
- final org.drip.function.definition.R1ToR1 funcSampleCoefficient,
- final double dblEpsilonExponent,
- final double dblExponentScaler)
- throws java.lang.Exception
- {
- if (null == (_funcSampleCoefficient = funcSampleCoefficient) ||
- !org.drip.numerical.common.NumberUtil.IsValid (_dblEpsilonExponent = dblEpsilonExponent) ||
- !org.drip.numerical.common.NumberUtil.IsValid (_dblExponentScaler = dblExponentScaler))
- throw new java.lang.Exception ("CoveringNumberLossBound ctr: Invalid Inputs");
- }
- /**
- * Retrieve the Sample Coefficient Function
- *
- * @return The Sample Coefficient Function
- */
- public org.drip.function.definition.R1ToR1 sampleCoefficient()
- {
- return _funcSampleCoefficient;
- }
- /**
- * Retrieve the Exponential Epsilon Exponent
- *
- * @return The Exponential Epsilon Exponent
- */
- public double epsilonExponent()
- {
- return _dblEpsilonExponent;
- }
- /**
- * Retrieve the Exponent Scaler
- *
- * @return The Exponent Scaler
- */
- public double exponentScaler()
- {
- return _dblExponentScaler;
- }
- /**
- * Compute the Upper Bound of the Probability of the Absolute Deviation between the Empirical and the
- * Population Means
- *
- * @param iSampleSize The Sample Size
- * @param dblEpsilon The Deviation between Population and Empirical Means
- *
- * @return The Upper Bound of the Probability of the Deviation between the Empirical and the Population
- * Means
- *
- * @throws java.lang.Exception Thrown if the Upper Bound of the Probability cannot be computed
- */
- public double deviationProbabilityUpperBound (
- final int iSampleSize,
- final double dblEpsilon)
- throws java.lang.Exception
- {
- if (0 >= iSampleSize || !org.drip.numerical.common.NumberUtil.IsValid (dblEpsilon) || 0. >= dblEpsilon)
- throw new java.lang.Exception
- ("CoveringNumberLossBound::deviationProbabilityUpperBound => Invalid Inputs");
- return _funcSampleCoefficient.evaluate (iSampleSize) * java.lang.Math.exp (-1. * iSampleSize *
- java.lang.Math.pow (dblEpsilon, _dblEpsilonExponent) / _dblExponentScaler);
- }
- }