MeasureConcentrationExpectationBound.java

  1. package org.drip.learning.bound;

  2. /*
  3.  * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
  4.  */

  5. /*!
  6.  * Copyright (C) 2020 Lakshmi Krishnamurthy
  7.  * Copyright (C) 2019 Lakshmi Krishnamurthy
  8.  * Copyright (C) 2018 Lakshmi Krishnamurthy
  9.  * Copyright (C) 2017 Lakshmi Krishnamurthy
  10.  * Copyright (C) 2016 Lakshmi Krishnamurthy
  11.  * Copyright (C) 2015 Lakshmi Krishnamurthy
  12.  *
  13.  *  This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
  14.  *      asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
  15.  *      analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
  16.  *      equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
  17.  *      numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
  18.  *      and computational support.
  19.  *  
  20.  *      https://lakshmidrip.github.io/DROP/
  21.  *  
  22.  *  DROP is composed of three modules:
  23.  *  
  24.  *  - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
  25.  *  - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
  26.  *  - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
  27.  *
  28.  *  DROP Product Core implements libraries for the following:
  29.  *  - Fixed Income Analytics
  30.  *  - Loan Analytics
  31.  *  - Transaction Cost Analytics
  32.  *
  33.  *  DROP Portfolio Core implements libraries for the following:
  34.  *  - Asset Allocation Analytics
  35.  *  - Asset Liability Management Analytics
  36.  *  - Capital Estimation Analytics
  37.  *  - Exposure Analytics
  38.  *  - Margin Analytics
  39.  *  - XVA Analytics
  40.  *
  41.  *  DROP Computational Core implements libraries for the following:
  42.  *  - Algorithm Support
  43.  *  - Computation Support
  44.  *  - Function Analysis
  45.  *  - Model Validation
  46.  *  - Numerical Analysis
  47.  *  - Numerical Optimizer
  48.  *  - Spline Builder
  49.  *  - Statistical Learning
  50.  *
  51.  *  Documentation for DROP is Spread Over:
  52.  *
  53.  *  - Main                     => https://lakshmidrip.github.io/DROP/
  54.  *  - Wiki                     => https://github.com/lakshmiDRIP/DROP/wiki
  55.  *  - GitHub                   => https://github.com/lakshmiDRIP/DROP
  56.  *  - Repo Layout Taxonomy     => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
  57.  *  - Javadoc                  => https://lakshmidrip.github.io/DROP/Javadoc/index.html
  58.  *  - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
  59.  *  - Release Versions         => https://lakshmidrip.github.io/DROP/version.html
  60.  *  - Community Credits        => https://lakshmidrip.github.io/DROP/credits.html
  61.  *  - Issues Catalog           => https://github.com/lakshmiDRIP/DROP/issues
  62.  *  - JUnit                    => https://lakshmidrip.github.io/DROP/junit/index.html
  63.  *  - Jacoco                   => https://lakshmidrip.github.io/DROP/jacoco/index.html
  64.  *
  65.  *  Licensed under the Apache License, Version 2.0 (the "License");
  66.  *      you may not use this file except in compliance with the License.
  67.  *  
  68.  *  You may obtain a copy of the License at
  69.  *      http://www.apache.org/licenses/LICENSE-2.0
  70.  *  
  71.  *  Unless required by applicable law or agreed to in writing, software
  72.  *      distributed under the License is distributed on an "AS IS" BASIS,
  73.  *      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  74.  *  
  75.  *  See the License for the specific language governing permissions and
  76.  *      limitations under the License.
  77.  */

  78. /**
  79.  * <i>MeasureConcentrationExpectationBound</i> provides the Upper Bound of the Expected Loss between
  80.  * Empirical Outcome and the Prediction of the given Learner Class using the Concentration of Measure
  81.  * Inequalities. This is expressed as C n<sup>a</sup>, where n is the Size of the Sample, and 'C' and 'a' are
  82.  * Constants specific to the Learning Class. The References are:
  83.  * <br><br>
  84.  * <ul>
  85.  *  <li>
  86.  *      Boucheron, S., G. Lugosi, and P. Massart (2003): Concentration Inequalities Using the Entropy Method
  87.  *          <i>Annals of Probability</i> <b>31</b> 1583-1614
  88.  *  </li>
  89.  *  <li>
  90.  *      Lugosi, G. (2002): Pattern Classification and Learning Theory, in: <i>L. Györ, editor, Principles
  91.  *          of Non-parametric Learning</i> <b>Springer</b> Wien 5-62
  92.  *  </li>
  93.  * </ul>
  94.  *
  95.  *  <br><br>
  96.  *  <ul>
  97.  *      <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
  98.  *      <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/StatisticalLearningLibrary.md">Statistical Learning</a></li>
  99.  *      <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/learning">Agnostic Learning Bounds under Empirical Loss Minimization Schemes</a></li>
  100.  *      <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/learning/bound">Covering Numbers, Concentration, Lipschitz Bounds</a></li>
  101.  *  </ul>
  102.  *
  103.  * @author Lakshmi Krishnamurthy
  104.  */

  105. public class MeasureConcentrationExpectationBound {
  106.     private double _dblConstant = java.lang.Double.NaN;
  107.     private double _dblExponent = java.lang.Double.NaN;

  108.     /**
  109.      * MeasureConcentrationExpectationBound Constructor
  110.      *
  111.      * @param dblConstant Asymptote Constant
  112.      * @param dblExponent Asymptote Exponent
  113.      *
  114.      * @throws java.lang.Exception Thrown if the Constant and/or Exponent is Invalid
  115.      */

  116.     public MeasureConcentrationExpectationBound (
  117.         final double dblConstant,
  118.         final double dblExponent)
  119.         throws java.lang.Exception
  120.     {
  121.         if (!org.drip.numerical.common.NumberUtil.IsValid (_dblConstant = dblConstant) ||
  122.             !org.drip.numerical.common.NumberUtil.IsValid (_dblExponent = dblExponent))
  123.             throw new java.lang.Exception ("MeasureConcentrationExpectationBound ctr: Invalid Inputs!");
  124.     }

  125.     /**
  126.      * Retrieve the Asymptote Constant
  127.      *
  128.      * @return The Asymptote Constant
  129.      */

  130.     public double constant()
  131.     {
  132.         return _dblConstant;
  133.     }

  134.     /**
  135.      * Retrieve the Asymptote Exponent
  136.      *
  137.      * @return The Asymptote Exponent
  138.      */

  139.     public double exponent()
  140.     {
  141.         return _dblExponent;
  142.     }

  143.     /**
  144.      * Compute the Expected Loss Upper Bound between the Sample and the Population for the specified Sample
  145.      *  Size
  146.      *
  147.      * @param iSampleSize The Sample Size
  148.      *
  149.      * @return The Expected Loss Upper Bound the Sample and the Population for the specified Sample Size
  150.      *
  151.      * @throws java.lang.Exception Thrown if the Expected Loss Upper Bound cannot be computed
  152.      */

  153.     public double lossExpectationUpperBound (
  154.         final int iSampleSize)
  155.         throws java.lang.Exception
  156.     {
  157.         if (0 >= iSampleSize)
  158.             throw new java.lang.Exception
  159.                 ("MeasureConcentrationExpectationBound::lossExpectationUpperBound => Invalid Inputs");

  160.         return _dblConstant * java.lang.Math.pow (iSampleSize, _dblExponent);
  161.     }
  162. }