IntegralOperator.java
- package org.drip.learning.kernel;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2020 Lakshmi Krishnamurthy
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- * Copyright (C) 2018 Lakshmi Krishnamurthy
- * Copyright (C) 2017 Lakshmi Krishnamurthy
- * Copyright (C) 2016 Lakshmi Krishnamurthy
- * Copyright (C) 2015 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
- * asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
- * analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
- * equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
- * numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
- * and computational support.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three modules:
- *
- * - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
- *
- * DROP Product Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Loan Analytics
- * - Transaction Cost Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Asset Liability Management Analytics
- * - Capital Estimation Analytics
- * - Exposure Analytics
- * - Margin Analytics
- * - XVA Analytics
- *
- * DROP Computational Core implements libraries for the following:
- * - Algorithm Support
- * - Computation Support
- * - Function Analysis
- * - Model Validation
- * - Numerical Analysis
- * - Numerical Optimizer
- * - Spline Builder
- * - Statistical Learning
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>IntegralOperator</i> implements the R<sup>x</sup> L<sub>2</sub> To R<sup>x</sup> L<sub>2</sub> Mercer
- * Kernel Integral Operator defined by:
- *
- * T_k [f(.)] := Integral Over Input Space {k (., y) * f(y) * d[Prob(y)]}
- *
- * <br><br>
- * The References are:
- * <br><br>
- * <ul>
- * <li>
- * Ash, R. (1965): <i>Information Theory</i> <b>Inter-science</b> New York
- * </li>
- * <li>
- * Konig, H. (1986): <i>Eigenvalue Distribution of Compact Operators</i> <b>Birkhauser</b> Basel,
- * Switzerland
- * </li>
- * <li>
- * Smola, A. J., A. Elisseff, B. Scholkopf, and R. C. Williamson (2000): Entropy Numbers for Convex
- * Combinations and mlps, in: <i>Advances in Large Margin Classifiers, A. Smola, P. Bartlett, B.
- * Scholkopf, and D. Schuurmans - editors</i> <b>MIT Press</b> Cambridge, MA
- * </li>
- * </ul>
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/StatisticalLearningLibrary.md">Statistical Learning</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/learning">Agnostic Learning Bounds under Empirical Loss Minimization Schemes</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/learning/kernel">Statistical Learning Banach Mercer Kernels</a></li>
- * </ul>
- *
- * @author Lakshmi Krishnamurthy
- */
- public abstract class IntegralOperator {
- private org.drip.measure.continuous.Rd _distRd = null;
- private org.drip.function.definition.RdToR1 _funcRdToR1 = null;
- private org.drip.spaces.metric.R1Normed _r1OperatorOutput = null;
- private org.drip.learning.kernel.SymmetricRdToNormedR1Kernel _kernel = null;
- /**
- * IntegralOperator Constructor
- *
- * @param kernel The Symmetric Mercer Kernel - this should be R^x L2 X R^x L2 To R^1
- * @param funcRdToR1 The R^d To R^1 Operator Function
- * @param r1OperatorOutput The Kernel Integral Operator Output Space - this is R^1 L2
- *
- * @throws java.lang.Exception Thrown if the Inputs are invalid
- */
- public IntegralOperator (
- final org.drip.learning.kernel.SymmetricRdToNormedR1Kernel kernel,
- final org.drip.function.definition.RdToR1 funcRdToR1,
- final org.drip.spaces.metric.R1Normed r1OperatorOutput)
- throws java.lang.Exception
- {
- if (null == (_kernel = kernel) || null == (_funcRdToR1 = funcRdToR1) || null == (_r1OperatorOutput =
- r1OperatorOutput) || null == (_distRd = _kernel.inputMetricVectorSpace().borelSigmaMeasure()))
- throw new java.lang.Exception ("IntegralOperator ctr: Invalid Inputs");
- }
- /**
- * Retrieve the Symmetric R^d To R^1 Kernel
- *
- * @return The Symmetric R^d To R^1 Kernel
- */
- public org.drip.learning.kernel.SymmetricRdToNormedR1Kernel kernel()
- {
- return _kernel;
- }
- /**
- * Retrieve the R^d To R^1 Kernel Operator Function
- *
- * @return The R^d To R^1 Kernel Operator Function
- */
- public org.drip.function.definition.RdToR1 kernelOperatorFunction()
- {
- return _funcRdToR1;
- }
- /**
- * Retrieve the Input Space Borel Sigma Measure
- *
- * @return The Input Space Borel Sigma Measure
- */
- public org.drip.measure.continuous.Rd inputSpaceBorelMeasure()
- {
- return _distRd;
- }
- /**
- * Retrieve the Kernel Integral Operator Output Space
- *
- * @return The Kernel Integral Operator Output Space
- */
- public org.drip.spaces.metric.R1Normed outputVectorMetricSpace()
- {
- return _r1OperatorOutput;
- }
- /**
- * Compute the Operator's Kernel Integral across the specified X Variate Instance
- *
- * @param adblX Validated Vector Instance X
- *
- * @return The Operator's Kernel Integral across the specified X Variate Instance
- *
- * @throws java.lang.Exception Thrown if the Inputs are invalid
- */
- public double computeOperatorIntegral (
- final double[] adblX)
- throws java.lang.Exception
- {
- org.drip.function.definition.RdToR1 funcRdToR1 = new org.drip.function.definition.RdToR1 (null) {
- @Override public int dimension()
- {
- return null == adblX ? 0 : adblX.length;
- }
- @Override public double evaluate (
- final double[] adblY)
- throws java.lang.Exception
- {
- return _kernel.evaluate (adblX, adblY) * _funcRdToR1.evaluate (adblY);
- }
- };
- return _kernel.inputMetricVectorSpace().borelMeasureSpaceExpectation (funcRdToR1);
- }
- /**
- * Indicate the Kernel Operator Integral's Positive-definiteness across the specified X Variate Instance
- *
- * @param adblX Validated Vector Instance X
- *
- * @return TRUE - The Kernel Operator Integral is Positive Definite across the specified X Variate
- * Instance
- */
- public boolean isPositiveDefinite (
- final double[] adblX)
- {
- try {
- return 0 < computeOperatorIntegral (adblX);
- } catch (java.lang.Exception e) {
- e.printStackTrace();
- }
- return false;
- }
- /**
- * Eigenize the Kernel Integral Operator
- *
- * @return The Eigenization Output
- */
- public abstract org.drip.learning.kernel.IntegralOperatorEigenContainer eigenize();
- }