IntegralOperatorEigenContainer.java
- package org.drip.learning.kernel;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2020 Lakshmi Krishnamurthy
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- * Copyright (C) 2018 Lakshmi Krishnamurthy
- * Copyright (C) 2017 Lakshmi Krishnamurthy
- * Copyright (C) 2016 Lakshmi Krishnamurthy
- * Copyright (C) 2015 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
- * asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
- * analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
- * equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
- * numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
- * and computational support.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three modules:
- *
- * - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
- *
- * DROP Product Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Loan Analytics
- * - Transaction Cost Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Asset Liability Management Analytics
- * - Capital Estimation Analytics
- * - Exposure Analytics
- * - Margin Analytics
- * - XVA Analytics
- *
- * DROP Computational Core implements libraries for the following:
- * - Algorithm Support
- * - Computation Support
- * - Function Analysis
- * - Model Validation
- * - Numerical Analysis
- * - Numerical Optimizer
- * - Spline Builder
- * - Statistical Learning
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>IntegralOperatorEigenContainer</i> holds the Group of Eigen-Components that result from the
- * Eigenization of the R<sup>x</sup> L<sub>2</sub> To R<sup>x</sup> L<sub>2</sub> Kernel Linear Integral
- * Operator defined by:
- *
- * T_k [f(.)] := Integral Over Input Space {k (., y) * f(y) * d[Prob(y)]}
- *
- * <br><br>
- * The References are:
- * <br><br>
- * <ul>
- * <li>
- * Ash, R. (1965): <i>Information Theory</i> <b>Inter-science</b> New York
- * </li>
- * <li>
- * Carl, B., and I. Stephani (1990): <i>Entropy, Compactness, and Approximation of Operators</i>
- * <b>Cambridge University Press</b> Cambridge UK
- * </li>
- * <li>
- * Gordon, Y., H. Konig, and C. Schutt (1987): Geometric and Probabilistic Estimates of Entropy and
- * Approximation Numbers of Operators <i>Journal of Approximation Theory</i> <b>49</b> 219-237
- * </li>
- * <li>
- * Konig, H. (1986): <i>Eigenvalue Distribution of Compact Operators</i> <b>Birkhauser</b> Basel,
- * Switzerland
- * </li>
- * <li>
- * Smola, A. J., A. Elisseff, B. Scholkopf, and R. C. Williamson (2000): Entropy Numbers for Convex
- * Combinations and mlps, in: <i>Advances in Large Margin Classifiers, A. Smola, P. Bartlett, B.
- * Scholkopf, and D. Schuurmans - editors</i> <b>MIT Press</b> Cambridge, MA
- * </li>
- * </ul>
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/StatisticalLearningLibrary.md">Statistical Learning</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/learning">Agnostic Learning Bounds under Empirical Loss Minimization Schemes</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/learning/kernel">Statistical Learning Banach Mercer Kernels</a></li>
- * </ul>
- *
- * @author Lakshmi Krishnamurthy
- */
- public class IntegralOperatorEigenContainer {
- private org.drip.learning.kernel.IntegralOperatorEigenComponent[] _aIOEC = null;
- /**
- * IntegralOperatorEigenContainer Constructor
- *
- * @param aIOEC Array of the Integral Operator Eigen-Components
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public IntegralOperatorEigenContainer (
- final org.drip.learning.kernel.IntegralOperatorEigenComponent[] aIOEC)
- throws java.lang.Exception
- {
- if (null == (_aIOEC = aIOEC) || 0 == _aIOEC.length)
- throw new java.lang.Exception ("IntegralOperatorEigenContainer ctr: Invalid Inputs");
- }
- /**
- * Retrieve the Array of the Integral Operator Eigen-Components
- *
- * @return The Array of the Integral Operator Eigen-Components
- */
- public org.drip.learning.kernel.IntegralOperatorEigenComponent[] eigenComponents()
- {
- return _aIOEC;
- }
- /**
- * Retrieve the Eigen Input Space
- *
- * @return The Eigen Input Space
- */
- public org.drip.spaces.metric.RdNormed inputMetricVectorSpace()
- {
- return _aIOEC[0].eigenFunction().inputMetricVectorSpace();
- }
- /**
- * Retrieve the Eigen Output Space
- *
- * @return The Eigen Output Space
- */
- public org.drip.spaces.metric.R1Normed outputMetricVectorSpace()
- {
- return _aIOEC[0].eigenFunction().outputMetricVectorSpace();
- }
- /**
- * Generate the Diagonally Scaled Normed Vector Space of the RKHS Feature Space Bounds that results on
- * applying the Diagonal Scaling Operator
- *
- * @param dso The Diagonal Scaling Operator
- *
- * @return The Diagonally Scaled Normed Vector Space of the RKHS Feature Space
- */
- public org.drip.spaces.metric.R1Combinatorial diagonallyScaledFeatureSpace (
- final org.drip.learning.kernel.DiagonalScalingOperator dso)
- {
- if (null == dso) return null;
- double[] adblDiagonalScalingOperator = dso.scaler();
- int iDimension = adblDiagonalScalingOperator.length;
- if (iDimension != _aIOEC.length) return null;
- java.util.List<java.lang.Double> lsElementSpace = new java.util.ArrayList<java.lang.Double>();
- for (int i = 0; i < iDimension; ++i)
- lsElementSpace.add (0.5 * _aIOEC[i].rkhsFeatureParallelepipedLength() /
- adblDiagonalScalingOperator[i]);
- try {
- return new org.drip.spaces.metric.R1Combinatorial (lsElementSpace, null, 2);
- } catch (java.lang.Exception e) {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Generate the Operator Class Covering Number Bounds of the RKHS Feature Space Bounds that result on the
- * Application of the Diagonal Scaling Operator
- *
- * @param dso The Diagonal Scaling Operator
- *
- * @return The Operator Class Covering Number Bounds of the RKHS Feature Space
- */
- public org.drip.spaces.cover.OperatorClassCoveringBounds scaledCoveringNumberBounds (
- final org.drip.learning.kernel.DiagonalScalingOperator dso)
- {
- final org.drip.spaces.metric.R1Combinatorial r1ContinuousScaled = diagonallyScaledFeatureSpace (dso);
- if (null == r1ContinuousScaled) return null;
- try {
- final double dblPopulationMetricNorm = r1ContinuousScaled.populationMetricNorm();
- org.drip.spaces.cover.OperatorClassCoveringBounds occb = new
- org.drip.spaces.cover.OperatorClassCoveringBounds() {
- @Override public double entropyNumberLowerBound()
- throws java.lang.Exception
- {
- return dso.entropyNumberLowerBound() * dblPopulationMetricNorm;
- }
- @Override public double entropyNumberUpperBound()
- throws java.lang.Exception
- {
- return dso.entropyNumberUpperBound() * dblPopulationMetricNorm;
- }
- @Override public int entropyNumberIndex()
- {
- return dso.entropyNumberIndex();
- }
- @Override public double norm()
- throws java.lang.Exception
- {
- return dso.norm() * dblPopulationMetricNorm;
- }
- @Override public org.drip.learning.bound.DiagonalOperatorCoveringBound
- entropyNumberAsymptote()
- {
- return dso.entropyNumberAsymptote();
- }
- };
- return occb;
- } catch (java.lang.Exception e) {
- e.printStackTrace();
- }
- return null;
- }
- }