SymmetricRdToNormedR1Kernel.java

  1. package org.drip.learning.kernel;

  2. /*
  3.  * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
  4.  */

  5. /*!
  6.  * Copyright (C) 2020 Lakshmi Krishnamurthy
  7.  * Copyright (C) 2019 Lakshmi Krishnamurthy
  8.  * Copyright (C) 2018 Lakshmi Krishnamurthy
  9.  * Copyright (C) 2017 Lakshmi Krishnamurthy
  10.  * Copyright (C) 2016 Lakshmi Krishnamurthy
  11.  * Copyright (C) 2015 Lakshmi Krishnamurthy
  12.  *
  13.  *  This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
  14.  *      asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
  15.  *      analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
  16.  *      equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
  17.  *      numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
  18.  *      and computational support.
  19.  *  
  20.  *      https://lakshmidrip.github.io/DROP/
  21.  *  
  22.  *  DROP is composed of three modules:
  23.  *  
  24.  *  - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
  25.  *  - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
  26.  *  - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
  27.  *
  28.  *  DROP Product Core implements libraries for the following:
  29.  *  - Fixed Income Analytics
  30.  *  - Loan Analytics
  31.  *  - Transaction Cost Analytics
  32.  *
  33.  *  DROP Portfolio Core implements libraries for the following:
  34.  *  - Asset Allocation Analytics
  35.  *  - Asset Liability Management Analytics
  36.  *  - Capital Estimation Analytics
  37.  *  - Exposure Analytics
  38.  *  - Margin Analytics
  39.  *  - XVA Analytics
  40.  *
  41.  *  DROP Computational Core implements libraries for the following:
  42.  *  - Algorithm Support
  43.  *  - Computation Support
  44.  *  - Function Analysis
  45.  *  - Model Validation
  46.  *  - Numerical Analysis
  47.  *  - Numerical Optimizer
  48.  *  - Spline Builder
  49.  *  - Statistical Learning
  50.  *
  51.  *  Documentation for DROP is Spread Over:
  52.  *
  53.  *  - Main                     => https://lakshmidrip.github.io/DROP/
  54.  *  - Wiki                     => https://github.com/lakshmiDRIP/DROP/wiki
  55.  *  - GitHub                   => https://github.com/lakshmiDRIP/DROP
  56.  *  - Repo Layout Taxonomy     => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
  57.  *  - Javadoc                  => https://lakshmidrip.github.io/DROP/Javadoc/index.html
  58.  *  - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
  59.  *  - Release Versions         => https://lakshmidrip.github.io/DROP/version.html
  60.  *  - Community Credits        => https://lakshmidrip.github.io/DROP/credits.html
  61.  *  - Issues Catalog           => https://github.com/lakshmiDRIP/DROP/issues
  62.  *  - JUnit                    => https://lakshmidrip.github.io/DROP/junit/index.html
  63.  *  - Jacoco                   => https://lakshmidrip.github.io/DROP/jacoco/index.html
  64.  *
  65.  *  Licensed under the Apache License, Version 2.0 (the "License");
  66.  *      you may not use this file except in compliance with the License.
  67.  *  
  68.  *  You may obtain a copy of the License at
  69.  *      http://www.apache.org/licenses/LICENSE-2.0
  70.  *  
  71.  *  Unless required by applicable law or agreed to in writing, software
  72.  *      distributed under the License is distributed on an "AS IS" BASIS,
  73.  *      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  74.  *  
  75.  *  See the License for the specific language governing permissions and
  76.  *      limitations under the License.
  77.  */

  78. /**
  79.  * <i>SymmetricRdToNormedR1Kernel</i> exposes the Functionality behind the Kernel that is Normed
  80.  * R<sup>d</sup> X Normed R<sup>d</sup> To Supremum R<sup>1</sup>, that is, a Kernel that symmetric in the
  81.  * Input Metric Vector Space in terms of both the Metric and the Dimensionality.
  82.  *  
  83.  * <br><br>
  84.  *  The References are:
  85.  * <br><br>
  86.  * <ul>
  87.  *  <li>
  88.  *      Ash, R. (1965): <i>Information Theory</i> <b>Inter-science</b> New York
  89.  *  </li>
  90.  *  <li>
  91.  *      Konig, H. (1986): <i>Eigenvalue Distribution of Compact Operators</i> <b>Birkhauser</b> Basel,
  92.  *          Switzerland
  93.  *  </li>
  94.  *  <li>
  95.  *      Smola, A. J., A. Elisseff, B. Scholkopf, and R. C. Williamson (2000): Entropy Numbers for Convex
  96.  *          Combinations and mlps, in: <i>Advances in Large Margin Classifiers, A. Smola, P. Bartlett, B.
  97.  *          Scholkopf, and D. Schuurmans - editors</i> <b>MIT Press</b> Cambridge, MA
  98.  *  </li>
  99.  * </ul>
  100.  *
  101.  *  <br><br>
  102.  *  <ul>
  103.  *      <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
  104.  *      <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/StatisticalLearningLibrary.md">Statistical Learning</a></li>
  105.  *      <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/learning">Agnostic Learning Bounds under Empirical Loss Minimization Schemes</a></li>
  106.  *      <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/learning/kernel">Statistical Learning Banach Mercer Kernels</a></li>
  107.  *  </ul>
  108.  *
  109.  * @author Lakshmi Krishnamurthy
  110.  */

  111. public abstract class SymmetricRdToNormedR1Kernel {
  112.     private org.drip.spaces.metric.RdNormed _rdContinuousInput = null;
  113.     private org.drip.spaces.metric.R1Normed _r1ContinuousOutput = null;

  114.     /**
  115.      * SymmetricRdToNormedR1Kernel Constructor
  116.      *
  117.      * @param rdContinuousInput The Symmetric Input R^d Metric Vector Space
  118.      * @param r1ContinuousOutput The Output R^1 Metric Vector Space
  119.      *
  120.      * @throws java.lang.Exception Thrown if the Inputs are Invalid
  121.      */

  122.     public SymmetricRdToNormedR1Kernel (
  123.         final org.drip.spaces.metric.RdNormed rdContinuousInput,
  124.         final org.drip.spaces.metric.R1Normed r1ContinuousOutput)
  125.         throws java.lang.Exception
  126.     {
  127.         if (null == (_rdContinuousInput = rdContinuousInput) || null == (_r1ContinuousOutput =
  128.             r1ContinuousOutput))
  129.             throw new java.lang.Exception ("SymmetricRdToNormedR1Kernel ctr: Invalid Inputs");
  130.     }

  131.     /**
  132.      * Retrieve the Symmetric Input Metric R^d Vector Space
  133.      *
  134.      * @return The Symmetric Input Metric R^d Vector Space
  135.      */

  136.     public org.drip.spaces.metric.RdNormed inputMetricVectorSpace()
  137.     {
  138.         return _rdContinuousInput;
  139.     }

  140.     /**
  141.      * Retrieve the Output R^1 Metric Vector Space
  142.      *
  143.      * @return The Output R^1 Metric Vector Space
  144.      */

  145.     public org.drip.spaces.metric.R1Normed outputMetricVectorSpace()
  146.     {
  147.         return _r1ContinuousOutput;
  148.     }

  149.     /**
  150.      * Compute the Feature Space Input Dimension
  151.      *
  152.      * @return The Feature Space Input Dimension
  153.      */

  154.     public int featureSpaceDimension()
  155.     {
  156.         return _rdContinuousInput.dimension();
  157.     }

  158.     /**
  159.      * Compute the Kernel's R^d X R^d To R^1 Value
  160.      *
  161.      * @param adblX Validated Vector Instance X
  162.      * @param adblY Validated Vector Instance Y
  163.      *
  164.      * @return The Kernel's R^d X R^d To R^1 Value
  165.      *
  166.      * @throws java.lang.Exception Thrown if the Inputs are invalid
  167.      */

  168.     public abstract double evaluate (
  169.         final double[] adblX,
  170.         final double[] adblY)
  171.         throws java.lang.Exception;
  172. }