RegularizationFunction.java

  1. package org.drip.learning.regularization;

  2. /*
  3.  * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
  4.  */

  5. /*!
  6.  * Copyright (C) 2020 Lakshmi Krishnamurthy
  7.  * Copyright (C) 2019 Lakshmi Krishnamurthy
  8.  * Copyright (C) 2018 Lakshmi Krishnamurthy
  9.  * Copyright (C) 2017 Lakshmi Krishnamurthy
  10.  * Copyright (C) 2016 Lakshmi Krishnamurthy
  11.  * Copyright (C) 2015 Lakshmi Krishnamurthy
  12.  *
  13.  *  This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
  14.  *      asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
  15.  *      analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
  16.  *      equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
  17.  *      numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
  18.  *      and computational support.
  19.  *  
  20.  *      https://lakshmidrip.github.io/DROP/
  21.  *  
  22.  *  DROP is composed of three modules:
  23.  *  
  24.  *  - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
  25.  *  - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
  26.  *  - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
  27.  *
  28.  *  DROP Product Core implements libraries for the following:
  29.  *  - Fixed Income Analytics
  30.  *  - Loan Analytics
  31.  *  - Transaction Cost Analytics
  32.  *
  33.  *  DROP Portfolio Core implements libraries for the following:
  34.  *  - Asset Allocation Analytics
  35.  *  - Asset Liability Management Analytics
  36.  *  - Capital Estimation Analytics
  37.  *  - Exposure Analytics
  38.  *  - Margin Analytics
  39.  *  - XVA Analytics
  40.  *
  41.  *  DROP Computational Core implements libraries for the following:
  42.  *  - Algorithm Support
  43.  *  - Computation Support
  44.  *  - Function Analysis
  45.  *  - Model Validation
  46.  *  - Numerical Analysis
  47.  *  - Numerical Optimizer
  48.  *  - Spline Builder
  49.  *  - Statistical Learning
  50.  *
  51.  *  Documentation for DROP is Spread Over:
  52.  *
  53.  *  - Main                     => https://lakshmidrip.github.io/DROP/
  54.  *  - Wiki                     => https://github.com/lakshmiDRIP/DROP/wiki
  55.  *  - GitHub                   => https://github.com/lakshmiDRIP/DROP
  56.  *  - Repo Layout Taxonomy     => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
  57.  *  - Javadoc                  => https://lakshmidrip.github.io/DROP/Javadoc/index.html
  58.  *  - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
  59.  *  - Release Versions         => https://lakshmidrip.github.io/DROP/version.html
  60.  *  - Community Credits        => https://lakshmidrip.github.io/DROP/credits.html
  61.  *  - Issues Catalog           => https://github.com/lakshmiDRIP/DROP/issues
  62.  *  - JUnit                    => https://lakshmidrip.github.io/DROP/junit/index.html
  63.  *  - Jacoco                   => https://lakshmidrip.github.io/DROP/jacoco/index.html
  64.  *
  65.  *  Licensed under the Apache License, Version 2.0 (the "License");
  66.  *      you may not use this file except in compliance with the License.
  67.  *  
  68.  *  You may obtain a copy of the License at
  69.  *      http://www.apache.org/licenses/LICENSE-2.0
  70.  *  
  71.  *  Unless required by applicable law or agreed to in writing, software
  72.  *      distributed under the License is distributed on an "AS IS" BASIS,
  73.  *      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  74.  *  
  75.  *  See the License for the specific language governing permissions and
  76.  *      limitations under the License.
  77.  */

  78. /**
  79.  * <i>RegularizerFunction</i> the R<sup>1</sup> To R<sup>1</sup> and the R<sup>d</sup> To R<sup>1</sup>
  80.  * Regularization Functions. The References are:
  81.  *  
  82.  * <br><br>
  83.  * <ul>
  84.  *  <li>
  85.  *      Alon, N., S. Ben-David, N. Cesa Bianchi, and D. Haussler (1997): Scale-sensitive Dimensions, Uniform
  86.  *          Convergence, and Learnability <i>Journal of Association of Computational Machinery</i> <b>44
  87.  *          (4)</b> 615-631
  88.  *  </li>
  89.  *  <li>
  90.  *      Anthony, M., and P. L. Bartlett (1999): <i>Artificial Neural Network Learning - Theoretical
  91.  *          Foundations</i> <b>Cambridge University Press</b> Cambridge, UK
  92.  *  </li>
  93.  *  <li>
  94.  *      Kearns, M. J., R. E. Schapire, and L. M. Sellie (1994): <i>Towards Efficient Agnostic Learning</i>
  95.  *          Machine Learning <b>17 (2)</b> 115-141
  96.  *  </li>
  97.  *  <li>
  98.  *      Lee, W. S., P. L. Bartlett, and R. C. Williamson (1998): The Importance of Convexity in Learning with
  99.  *          Squared Loss <i>IEEE Transactions on Information Theory</i> <b>44</b> 1974-1980
  100.  *  </li>
  101.  *  <li>
  102.  *      Vapnik, V. N. (1998): <i>Statistical learning Theory</i> <b>Wiley</b> New York
  103.  *  </li>
  104.  * </ul>
  105.  *
  106.  *  <br><br>
  107.  *  <ul>
  108.  *      <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
  109.  *      <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/StatisticalLearningLibrary.md">Statistical Learning</a></li>
  110.  *      <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/learning">Agnostic Learning Bounds under Empirical Loss Minimization Schemes</a></li>
  111.  *      <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/learning/regularization">Statistical Learning Empirical Loss Regularizer</a></li>
  112.  *  </ul>
  113.  *
  114.  * @author Lakshmi Krishnamurthy
  115.  */

  116. public class RegularizationFunction {
  117.     private double _dblLambda = java.lang.Double.NaN;
  118.     private org.drip.function.definition.R1ToR1 _regR1ToR1 = null;
  119.     private org.drip.function.definition.RdToR1 _regRdToR1 = null;

  120.     /**
  121.      * RegularizationFunction Constructor
  122.      *
  123.      * @param regR1ToR1 R^1 To R^1 Regularization Function
  124.      * @param regRdToR1 R^d To R^1 Regularization Function
  125.      * @param dblLambda The Regularizer Lambda
  126.      *
  127.      * @throws java.lang.Exception Thrown if the Inputs are Invalid
  128.      */

  129.     public RegularizationFunction (
  130.         final org.drip.function.definition.R1ToR1 regR1ToR1,
  131.         final org.drip.function.definition.RdToR1 regRdToR1,
  132.         final double dblLambda)
  133.         throws java.lang.Exception
  134.     {
  135.         if (null == (_regR1ToR1 = regR1ToR1) && null == (_regRdToR1 = regRdToR1) ||
  136.             !org.drip.numerical.common.NumberUtil.IsValid (_dblLambda = dblLambda))
  137.             throw new java.lang.Exception ("RegularizationFunction ctr: Invalid Inputs");
  138.     }

  139.     /**
  140.      * Retrieve the R^1 To R^1 Regularization Function
  141.      *
  142.      * @return The R^1 To R^1 Regularization Function Instance
  143.      */

  144.     public org.drip.function.definition.R1ToR1 r1Tor1()
  145.     {
  146.         return _regR1ToR1;
  147.     }

  148.     /**
  149.      * Retrieve the R^d To R^1 Regularization Function
  150.      *
  151.      * @return The R^d To R^1 Regularization Function Instance
  152.      */

  153.     public org.drip.function.definition.RdToR1 rdTor1()
  154.     {
  155.         return _regRdToR1;
  156.     }

  157.     /**
  158.      * Retrieve the Regularization Constant Lambda
  159.      *
  160.      * @return The Regularization Constant Lambda
  161.      */

  162.     public double lambda()
  163.     {
  164.         return _dblLambda;
  165.     }
  166. }