RegularizerR1ContinuousToR1Continuous.java
- package org.drip.learning.regularization;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2020 Lakshmi Krishnamurthy
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- * Copyright (C) 2018 Lakshmi Krishnamurthy
- * Copyright (C) 2017 Lakshmi Krishnamurthy
- * Copyright (C) 2016 Lakshmi Krishnamurthy
- * Copyright (C) 2015 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
- * asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
- * analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
- * equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
- * numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
- * and computational support.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three modules:
- *
- * - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
- *
- * DROP Product Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Loan Analytics
- * - Transaction Cost Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Asset Liability Management Analytics
- * - Capital Estimation Analytics
- * - Exposure Analytics
- * - Margin Analytics
- * - XVA Analytics
- *
- * DROP Computational Core implements libraries for the following:
- * - Algorithm Support
- * - Computation Support
- * - Function Analysis
- * - Model Validation
- * - Numerical Analysis
- * - Numerical Optimizer
- * - Spline Builder
- * - Statistical Learning
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>RegularizerR1ContinuousToR1Continuous</i> computes the Structural Loss and Risk for the specified
- * Normed R<sup>1</sup> Continuous To Normed R<sup>1</sup> Continuous Learning Function.
- *
- * <br><br>
- * <ul>
- * <li>
- * Alon, N., S. Ben-David, N. Cesa Bianchi, and D. Haussler (1997): Scale-sensitive Dimensions, Uniform
- * Convergence, and Learnability <i>Journal of Association of Computational Machinery</i> <b>44
- * (4)</b> 615-631
- * </li>
- * <li>
- * Anthony, M., and P. L. Bartlett (1999): <i>Artificial Neural Network Learning - Theoretical
- * Foundations</i> <b>Cambridge University Press</b> Cambridge, UK
- * </li>
- * <li>
- * Kearns, M. J., R. E. Schapire, and L. M. Sellie (1994): <i>Towards Efficient Agnostic Learning</i>
- * Machine Learning <b>17 (2)</b> 115-141
- * </li>
- * <li>
- * Lee, W. S., P. L. Bartlett, and R. C. Williamson (1998): The Importance of Convexity in Learning with
- * Squared Loss <i>IEEE Transactions on Information Theory</i> <b>44</b> 1974-1980
- * </li>
- * <li>
- * Vapnik, V. N. (1998): <i>Statistical learning Theory</i> <b>Wiley</b> New York
- * </li>
- * </ul>
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/StatisticalLearningLibrary.md">Statistical Learning</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/learning">Agnostic Learning Bounds under Empirical Loss Minimization Schemes</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/learning/regularization">Statistical Learning Empirical Loss Regularizer</a></li>
- * </ul>
- *
- * @author Lakshmi Krishnamurthy
- */
- public class RegularizerR1ContinuousToR1Continuous extends
- org.drip.spaces.rxtor1.NormedR1ContinuousToR1Continuous implements
- org.drip.learning.regularization.RegularizerR1ToR1 {
- private double _dblLambda = java.lang.Double.NaN;
- /**
- * RegularizerR1ContinuousToR1Continuous Function Space Constructor
- *
- * @param funcRegularizerR1ToR1 The R^1 To R^1 Regularizer Function
- * @param r1ContinuousInput The Continuous R^1 Input Metric Vector Space
- * @param r1ContinuousOutput The Continuous R^1 Output Metric Vector Space
- * @param dblLambda The Regularization Lambda
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public RegularizerR1ContinuousToR1Continuous (
- final org.drip.function.definition.R1ToR1 funcRegularizerR1ToR1,
- final org.drip.spaces.metric.R1Continuous r1ContinuousInput,
- final org.drip.spaces.metric.R1Continuous r1ContinuousOutput,
- final double dblLambda)
- throws java.lang.Exception
- {
- super (r1ContinuousInput, r1ContinuousOutput, funcRegularizerR1ToR1);
- if (!org.drip.numerical.common.NumberUtil.IsValid (_dblLambda = dblLambda) || 0 > _dblLambda)
- throw new java.lang.Exception
- ("RegularizerR1ContinuousToR1Continuous Constructor => Invalid Inputs");
- }
- @Override public double lambda()
- {
- return _dblLambda;
- }
- @Override public double structuralLoss (
- final org.drip.function.definition.R1ToR1 funcR1ToR1,
- final double[] adblX)
- throws java.lang.Exception
- {
- if (null == funcR1ToR1 || null == adblX)
- throw new java.lang.Exception
- ("RegularizerR1ContinuousToR1Continuous::structuralLoss => Invalid Inputs");
- double dblLoss = 0.;
- int iNumSample = adblX.length;
- if (0 == iNumSample)
- throw new java.lang.Exception
- ("RegularizerR1ContinuousToR1Continuous::structuralLoss => Invalid Inputs");
- org.drip.function.definition.R1ToR1 funcRegularizerR1ToR1 = function();
- int iPNorm = outputMetricVectorSpace().pNorm();
- if (java.lang.Integer.MAX_VALUE == iPNorm) {
- double dblSupremum = 0.;
- for (int i = 0; i < iNumSample; ++i) {
- double dblNodeValue = java.lang.Math.abs (funcRegularizerR1ToR1.evaluate (adblX[i]) *
- funcR1ToR1.evaluate (adblX[i]));
- if (dblSupremum < dblNodeValue) dblSupremum = dblNodeValue;
- }
- return dblSupremum;
- }
- for (int i = 0; i < iNumSample; ++i)
- dblLoss += java.lang.Math.pow (java.lang.Math.abs (funcRegularizerR1ToR1.evaluate (adblX[i]) *
- funcR1ToR1.evaluate (adblX[i])), iPNorm);
- return dblLoss / iPNorm;
- }
- @Override public double structuralRisk (
- final org.drip.measure.continuous.R1R1 distR1R1,
- final org.drip.function.definition.R1ToR1 funcR1ToR1,
- final double[] adblX,
- final double[] adblY)
- throws java.lang.Exception
- {
- if (null == funcR1ToR1 || null == adblX || null == adblY)
- throw new java.lang.Exception
- ("RegularizerR1ContinuousToR1Continuous::structuralRisk => Invalid Inputs");
- double dblLoss = 0.;
- double dblNormalizer = 0.;
- int iNumSample = adblX.length;
- if (0 == iNumSample || iNumSample != adblY.length)
- throw new java.lang.Exception
- ("RegularizerR1ContinuousToR1Continuous::structuralRisk => Invalid Inputs");
- int iPNorm = outputMetricVectorSpace().pNorm();
- org.drip.function.definition.R1ToR1 funcRegularizerR1ToR1 = function();
- if (java.lang.Integer.MAX_VALUE == iPNorm) {
- double dblWeightedSupremum = 0.;
- double dblSupremumNodeValue = 0.;
- for (int i = 0; i < iNumSample; ++i) {
- double dblNodeValue = java.lang.Math.abs (funcRegularizerR1ToR1.evaluate (adblX[i]) *
- funcR1ToR1.evaluate (adblX[i]));
- double dblWeightedNodeValue = distR1R1.density (adblX[i], adblY[i]) * dblNodeValue;
- if (dblWeightedNodeValue > dblWeightedSupremum) {
- dblSupremumNodeValue = dblNodeValue;
- dblWeightedSupremum = dblWeightedNodeValue;
- }
- }
- return dblSupremumNodeValue;
- }
- for (int i = 0; i < iNumSample; ++i) {
- double dblDensity = distR1R1.density (adblX[i], adblY[i]);
- dblNormalizer += dblDensity;
- dblLoss += dblDensity * java.lang.Math.pow (java.lang.Math.abs (funcRegularizerR1ToR1.evaluate
- (adblX[i]) * funcR1ToR1.evaluate (adblX[i])), iPNorm);
- }
- return dblLoss / iPNorm / dblNormalizer;
- }
- }