EmpiricalPenaltySupremumMetrics.java
- package org.drip.learning.rxtor1;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2020 Lakshmi Krishnamurthy
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- * Copyright (C) 2018 Lakshmi Krishnamurthy
- * Copyright (C) 2017 Lakshmi Krishnamurthy
- * Copyright (C) 2016 Lakshmi Krishnamurthy
- * Copyright (C) 2015 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
- * asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
- * analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
- * equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
- * numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
- * and computational support.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three modules:
- *
- * - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
- *
- * DROP Product Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Loan Analytics
- * - Transaction Cost Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Asset Liability Management Analytics
- * - Capital Estimation Analytics
- * - Exposure Analytics
- * - Margin Analytics
- * - XVA Analytics
- *
- * DROP Computational Core implements libraries for the following:
- * - Algorithm Support
- * - Computation Support
- * - Function Analysis
- * - Model Validation
- * - Numerical Analysis
- * - Numerical Optimizer
- * - Spline Builder
- * - Statistical Learning
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>EmpiricalPenaltySupremumMetrics</i> computes Efron-Stein Metrics for the Penalty Supremum R<sup>x</sup>
- * To R<sup>1</sup> Functions.
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/StatisticalLearningLibrary.md">Statistical Learning</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/learning">Agnostic Learning Bounds under Empirical Loss Minimization Schemes</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/learning/rxtor1">Statistical Learning Empirical Loss Penalizer</a></li>
- * </ul>
- *
- * @author Lakshmi Krishnamurthy
- */
- public class EmpiricalPenaltySupremumMetrics extends org.drip.sequence.functional.EfronSteinMetrics {
- private org.drip.learning.rxtor1.EmpiricalPenaltySupremumEstimator _epse = null;
- private org.drip.learning.bound.MeasureConcentrationExpectationBound _mceb = null;
- /**
- * EmpiricalPenaltySupremumMetrics Constructor
- *
- * @param epse R^x To R^1 The Empirical Penalty Supremum Estimator Instance
- * @param aSSAM Array of the Individual Single Sequence Metrics
- * @param mceb The Concentration-of-Measure Loss Expectation Bound Estimator
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public EmpiricalPenaltySupremumMetrics (
- final org.drip.learning.rxtor1.EmpiricalPenaltySupremumEstimator epse,
- final org.drip.sequence.metrics.SingleSequenceAgnosticMetrics[] aSSAM,
- final org.drip.learning.bound.MeasureConcentrationExpectationBound mceb)
- throws java.lang.Exception
- {
- super (epse, aSSAM);
- if (null == (_epse = epse) || null == (_mceb = mceb))
- throw new java.lang.Exception ("EmpiricalPenaltySupremumMetrics ctr: Invalid Inputs");
- }
- /**
- * Retrieve the Empirical Penalty Supremum Function
- *
- * @return The Empirical Penalty Supremum Function
- */
- public org.drip.learning.rxtor1.EmpiricalPenaltySupremumEstimator empiricalPenaltySupremumEstimator()
- {
- return _epse;
- }
- /**
- * Retrieve the Univariate Sequence Dependent Variance Bound
- *
- * @param adblVariate The univariate Sequence
- *
- * @return The Univariate Sequence Dependent Variance Bound
- *
- * @throws java.lang.Exception Thrown if the Date Dependent Variance Bound cannot be Computed
- */
- public double dataDependentVarianceBound (
- final double[] adblVariate)
- throws java.lang.Exception
- {
- return _epse.evaluate (adblVariate) / adblVariate.length;
- }
- /**
- * Retrieve the Multivariate Sequence Dependent Variance Bound
- *
- * @param aadblVariate The Multivariate Sequence
- *
- * @return The Multivariate Sequence Dependent Variance Bound
- *
- * @throws java.lang.Exception Thrown if the Date Dependent Variance Bound cannot be Computed
- */
- public double dataDependentVarianceBound (
- final double[][] aadblVariate)
- throws java.lang.Exception
- {
- return _epse.evaluate (aadblVariate) / aadblVariate.length;
- }
- /**
- * Compute the Lugosi Data-Dependent Variance Bound from the Sample and the Classifier Class Asymptotic
- * Behavior. The Reference is:
- *
- * G. Lugosi (2002): Pattern Classification and Learning Theory, in: L.Gyorfi, editor, Principles of
- * Non-parametric Learning, 5-62, Springer, Wien.
- *
- * @param adblVariate The Sample Univariate Array
- *
- * @return The Lugosi Data-Dependent Variance Bound
- *
- * @throws java.lang.Exception Thrown if the Lugosi Data-Dependent Variance Bound cannot be computed
- */
- public double lugosiVarianceBound (
- final double[] adblVariate)
- throws java.lang.Exception
- {
- org.drip.function.definition.R1ToR1 supR1ToR1 = _epse.supremumR1ToR1 (adblVariate);
- if (null == supR1ToR1)
- throw new java.lang.Exception
- ("EmpiricalPenaltySupremumMetrics::lugosiVarianceBound => Cannot Find Supremum Classifier");
- return dataDependentVarianceBound (adblVariate) + _mceb.constant() + java.lang.Math.pow
- (adblVariate.length, _mceb.exponent());
- }
- /**
- * Compute the Lugosi Data-Dependent Variance Bound from the Sample and the Classifier Class Asymptotic
- * Behavior. The Reference is:
- *
- * G. Lugosi (2002): Pattern Classification and Learning Theory, in: L.Gyorfi, editor, Principles of
- * Non-parametric Learning, 5-62, Springer, Wien.
- *
- * @param aadblVariate The Sample Multivariate Array
- *
- * @return The Lugosi Data-Dependent Variance Bound
- *
- * @throws java.lang.Exception Thrown if the Lugosi Data-Dependent Variance Bound cannot be computed
- */
- public double lugosiVarianceBound (
- final double[][] aadblVariate)
- throws java.lang.Exception
- {
- org.drip.function.definition.RdToR1 supRdToR1 = _epse.supremumRdToR1 (aadblVariate);
- if (null == supRdToR1)
- throw new java.lang.Exception
- ("EmpiricalPenaltySupremumMetrics::lugosiVarianceBound => Cannot Find Supremum Classifier");
- return dataDependentVarianceBound (aadblVariate) + _mceb.constant() + java.lang.Math.pow
- (aadblVariate.length, _mceb.exponent());
- }
- }