GeneralizedLearner.java
package org.drip.learning.rxtor1;
/*
* -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*/
/*!
* Copyright (C) 2020 Lakshmi Krishnamurthy
* Copyright (C) 2019 Lakshmi Krishnamurthy
* Copyright (C) 2018 Lakshmi Krishnamurthy
* Copyright (C) 2017 Lakshmi Krishnamurthy
* Copyright (C) 2016 Lakshmi Krishnamurthy
* Copyright (C) 2015 Lakshmi Krishnamurthy
*
* This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
* asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
* analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
* equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
* numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
* and computational support.
*
* https://lakshmidrip.github.io/DROP/
*
* DROP is composed of three modules:
*
* - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
* - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
* - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
*
* DROP Product Core implements libraries for the following:
* - Fixed Income Analytics
* - Loan Analytics
* - Transaction Cost Analytics
*
* DROP Portfolio Core implements libraries for the following:
* - Asset Allocation Analytics
* - Asset Liability Management Analytics
* - Capital Estimation Analytics
* - Exposure Analytics
* - Margin Analytics
* - XVA Analytics
*
* DROP Computational Core implements libraries for the following:
* - Algorithm Support
* - Computation Support
* - Function Analysis
* - Model Validation
* - Numerical Analysis
* - Numerical Optimizer
* - Spline Builder
* - Statistical Learning
*
* Documentation for DROP is Spread Over:
*
* - Main => https://lakshmidrip.github.io/DROP/
* - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
* - GitHub => https://github.com/lakshmiDRIP/DROP
* - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
* - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
* - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
* - Release Versions => https://lakshmidrip.github.io/DROP/version.html
* - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
* - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
* - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
* - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
*
* You may obtain a copy of the License at
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* <i>GeneralizedLearner</i> implements the Learner Class that holds the Space of Normed R<sup>x</sup> To
* Normed R<sup>1</sup> Learning Functions along with their Custom Empirical Loss. Class-Specific Asymptotic
* Sample, Covering Number based Upper Probability Bounds and other Parameters are also maintained.
*
* <br><br>
* The References are:
*
* <br><br>
* <ul>
* <li>
* Alon, N., S. Ben-David, N. Cesa Bianchi, and D. Haussler (1997): Scale-sensitive Dimensions, Uniform
* Convergence, and Learnability <i>Journal of Association of Computational Machinery</i> <b>44
* (4)</b> 615-631
* </li>
* <li>
* Anthony, M., and P. L. Bartlett (1999): <i>Artificial Neural Network Learning - Theoretical
* Foundations</i> <b>Cambridge University Press</b> Cambridge, UK
* </li>
* <li>
* Kearns, M. J., R. E. Schapire, and L. M. Sellie (1994): <i>Towards Efficient Agnostic Learning</i>
* Machine Learning <b>17 (2)</b> 115-141
* </li>
* <li>
* Lee, W. S., P. L. Bartlett, and R. C. Williamson (1998): The Importance of Convexity in Learning with
* Squared Loss <i>IEEE Transactions on Information Theory</i> <b>44</b> 1974-1980
* </li>
* <li>
* Vapnik, V. N. (1998): <i>Statistical learning Theory</i> <b>Wiley</b> New York
* </li>
* </ul>
*
* <br><br>
* <ul>
* <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
* <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/StatisticalLearningLibrary.md">Statistical Learning</a></li>
* <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/learning">Agnostic Learning Bounds under Empirical Loss Minimization Schemes</a></li>
* <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/learning/rxtor1">Statistical Learning Empirical Loss Penalizer</a></li>
* </ul>
*
* @author Lakshmi Krishnamurthy
*/
public abstract class GeneralizedLearner implements org.drip.learning.rxtor1.EmpiricalLearningMetricEstimator
{
private org.drip.learning.bound.CoveringNumberLossBound _funcClassCNLB = null;
private org.drip.spaces.functionclass.NormedRxToNormedR1Finite _funcClassRxToR1 = null;
private org.drip.learning.regularization.RegularizationFunction _regularizerFunc = null;
/**
* GeneralizedLearner Constructor
*
* @param funcClassRxToR1 R^x To R^1 Function Class
* @param funcClassCNLB The Function Class Covering Number based Deviation Upper Probability Bound
* Generator
* @param regularizerFunc The Regularizer Function
*
* @throws java.lang.Exception Thrown if the Inputs are Invalid
*/
public GeneralizedLearner (
final org.drip.spaces.functionclass.NormedRxToNormedR1Finite funcClassRxToR1,
final org.drip.learning.bound.CoveringNumberLossBound funcClassCNLB,
final org.drip.learning.regularization.RegularizationFunction regularizerFunc)
throws java.lang.Exception
{
if (null == (_funcClassRxToR1 = funcClassRxToR1) || null == (_funcClassCNLB = funcClassCNLB) || null
== (_regularizerFunc = regularizerFunc))
throw new java.lang.Exception ("GeneralizedLearner ctr: Invalid Inputs");
}
@Override public org.drip.spaces.functionclass.NormedRxToNormedR1Finite functionClass()
{
return _funcClassRxToR1;
}
@Override public org.drip.learning.regularization.RegularizationFunction regularizerFunction()
{
return _regularizerFunc;
}
@Override public org.drip.learning.rxtor1.EmpiricalPenaltySupremum supremumEmpiricalLoss (
final org.drip.spaces.instance.GeneralizedValidatedVector gvviX,
final org.drip.spaces.instance.GeneralizedValidatedVector gvviY)
{
try {
return new org.drip.learning.rxtor1.EmpiricalPenaltySupremumEstimator
(org.drip.learning.rxtor1.EmpiricalPenaltySupremumEstimator.SUPREMUM_PENALTY_EMPIRICAL_LOSS,
this, gvviY, null, null).supremum (gvviX);
} catch (java.lang.Exception e) {
e.printStackTrace();
}
return null;
}
@Override public double structuralLoss (
final org.drip.function.definition.R1ToR1 funcLearnerR1ToR1,
final org.drip.spaces.instance.GeneralizedValidatedVector gvvi)
throws java.lang.Exception
{
if (null == gvvi || !(gvvi instanceof org.drip.spaces.instance.ValidatedR1) &&
(_funcClassRxToR1 instanceof org.drip.spaces.functionclass.NormedR1ToNormedR1Finite))
throw new java.lang.Exception ("GeneralizedLearner::structuralLoss => Invalid Inputs");
org.drip.function.definition.R1ToR1 funcRegularizerR1ToR1 = _regularizerFunc.r1Tor1();
if (null == funcRegularizerR1ToR1)
throw new java.lang.Exception ("GeneralizedLearner::structuralLoss => Invalid Inputs");
org.drip.spaces.functionclass.NormedR1ToNormedR1Finite finiteClassR1ToR1 =
(org.drip.spaces.functionclass.NormedR1ToNormedR1Finite) _funcClassRxToR1;
org.drip.spaces.metric.GeneralizedMetricVectorSpace gmvsInput =
finiteClassR1ToR1.inputMetricVectorSpace();
if (gmvsInput instanceof org.drip.spaces.metric.R1Normed)
throw new java.lang.Exception ("GeneralizedLearner::structuralLoss => Invalid Inputs");
org.drip.spaces.metric.GeneralizedMetricVectorSpace gmvsOutput =
finiteClassR1ToR1.outputMetricVectorSpace();
if (gmvsOutput instanceof org.drip.spaces.metric.R1Continuous)
throw new java.lang.Exception ("GeneralizedLearner::structuralLoss => Invalid Inputs");
org.drip.learning.regularization.RegularizerR1ToR1 regularizerR1ToR1 =
org.drip.learning.regularization.RegularizerBuilder.ToR1Continuous (funcRegularizerR1ToR1,
(org.drip.spaces.metric.R1Normed) gmvsInput, (org.drip.spaces.metric.R1Continuous)
gmvsOutput, _regularizerFunc.lambda());
if (null == regularizerR1ToR1)
throw new java.lang.Exception ("GeneralizedLearner::structuralLoss => Invalid Inputs");
return regularizerR1ToR1.structuralLoss (funcLearnerR1ToR1, ((org.drip.spaces.instance.ValidatedR1)
gvvi).instance());
}
@Override public double structuralLoss (
final org.drip.function.definition.RdToR1 funcLearnerRdToR1,
final org.drip.spaces.instance.GeneralizedValidatedVector gvvi)
throws java.lang.Exception
{
if (null == gvvi || !(gvvi instanceof org.drip.spaces.instance.ValidatedRd) &&
(_funcClassRxToR1 instanceof org.drip.spaces.functionclass.NormedRdToNormedR1Finite))
throw new java.lang.Exception ("GeneralizedLearner::structuralLoss => Invalid Inputs");
org.drip.function.definition.RdToR1 funcRegularizerRdToR1 = _regularizerFunc.rdTor1();
if (null == funcRegularizerRdToR1)
throw new java.lang.Exception ("GeneralizedLearner::structuralLoss => Invalid Inputs");
org.drip.spaces.functionclass.NormedRdToNormedR1Finite finiteClassRdToR1 =
(org.drip.spaces.functionclass.NormedRdToNormedR1Finite) _funcClassRxToR1;
org.drip.spaces.metric.GeneralizedMetricVectorSpace gmvsInput =
finiteClassRdToR1.inputMetricVectorSpace();
if (gmvsInput instanceof org.drip.spaces.metric.RdNormed)
throw new java.lang.Exception ("GeneralizedLearner::structuralLoss => Invalid Inputs");
org.drip.spaces.metric.GeneralizedMetricVectorSpace gmvsOutput =
finiteClassRdToR1.outputMetricVectorSpace();
if (gmvsOutput instanceof org.drip.spaces.metric.R1Continuous)
throw new java.lang.Exception ("GeneralizedLearner::structuralLoss => Invalid Inputs");
org.drip.learning.regularization.RegularizerRdToR1 regularizerRdToR1 =
org.drip.learning.regularization.RegularizerBuilder.ToRdContinuous (funcRegularizerRdToR1,
(org.drip.spaces.metric.RdNormed) gmvsInput, (org.drip.spaces.metric.R1Continuous)
gmvsOutput, _regularizerFunc.lambda());
if (null == regularizerRdToR1)
throw new java.lang.Exception ("GeneralizedLearner::structuralLoss => Invalid Inputs");
return regularizerRdToR1.structuralLoss (funcLearnerRdToR1, ((org.drip.spaces.instance.ValidatedRd)
gvvi).instance());
}
@Override public org.drip.learning.rxtor1.EmpiricalPenaltySupremum supremumStructuralLoss (
final org.drip.spaces.instance.GeneralizedValidatedVector gvviX)
{
try {
return new org.drip.learning.rxtor1.EmpiricalPenaltySupremumEstimator
(org.drip.learning.rxtor1.EmpiricalPenaltySupremumEstimator.SUPREMUM_PENALTY_STRUCTURAL_LOSS,
this, null, null, null).supremum (gvviX);
} catch (java.lang.Exception e) {
e.printStackTrace();
}
return null;
}
@Override public double regularizedLoss (
final org.drip.function.definition.R1ToR1 funcLearnerR1ToR1,
final org.drip.spaces.instance.GeneralizedValidatedVector gvviX,
final org.drip.spaces.instance.GeneralizedValidatedVector gvviY)
throws java.lang.Exception
{
return empiricalLoss (funcLearnerR1ToR1, gvviX, gvviY) + structuralLoss (funcLearnerR1ToR1, gvviX);
}
@Override public double regularizedLoss (
final org.drip.function.definition.RdToR1 funcLearnerRdToR1,
final org.drip.spaces.instance.GeneralizedValidatedVector gvviX,
final org.drip.spaces.instance.GeneralizedValidatedVector gvviY)
throws java.lang.Exception
{
return empiricalLoss (funcLearnerRdToR1, gvviX, gvviY) + structuralLoss (funcLearnerRdToR1, gvviX);
}
@Override public org.drip.learning.rxtor1.EmpiricalPenaltySupremum supremumRegularizedLoss (
final org.drip.spaces.instance.GeneralizedValidatedVector gvviX,
final org.drip.spaces.instance.GeneralizedValidatedVector gvviY)
{
try {
return new org.drip.learning.rxtor1.EmpiricalPenaltySupremumEstimator
(org.drip.learning.rxtor1.EmpiricalPenaltySupremumEstimator.SUPREMUM_PENALTY_REGULARIZED_LOSS,
this, gvviY, null, null).supremum (gvviX);
} catch (java.lang.Exception e) {
e.printStackTrace();
}
return null;
}
@Override public org.drip.learning.rxtor1.EmpiricalPenaltySupremum supremumEmpiricalRisk (
final org.drip.measure.continuous.R1R1 distR1R1,
final org.drip.spaces.instance.GeneralizedValidatedVector gvviX,
final org.drip.spaces.instance.GeneralizedValidatedVector gvviY)
{
try {
return new org.drip.learning.rxtor1.EmpiricalPenaltySupremumEstimator
(org.drip.learning.rxtor1.EmpiricalPenaltySupremumEstimator.SUPREMUM_PENALTY_EMPIRICAL_RISK,
this, gvviY, distR1R1, null).supremum (gvviX);
} catch (java.lang.Exception e) {
e.printStackTrace();
}
return null;
}
@Override public org.drip.learning.rxtor1.EmpiricalPenaltySupremum supremumEmpiricalRisk (
final org.drip.measure.continuous.RdR1 distRdR1,
final org.drip.spaces.instance.GeneralizedValidatedVector gvviX,
final org.drip.spaces.instance.GeneralizedValidatedVector gvviY)
{
try {
return new org.drip.learning.rxtor1.EmpiricalPenaltySupremumEstimator
(org.drip.learning.rxtor1.EmpiricalPenaltySupremumEstimator.SUPREMUM_PENALTY_EMPIRICAL_RISK,
this, gvviY, null, distRdR1).supremum (gvviX);
} catch (java.lang.Exception e) {
e.printStackTrace();
}
return null;
}
@Override public double structuralRisk (
final org.drip.measure.continuous.R1R1 distR1R1,
final org.drip.function.definition.R1ToR1 funcLearnerR1ToR1,
final org.drip.spaces.instance.GeneralizedValidatedVector gvviX,
final org.drip.spaces.instance.GeneralizedValidatedVector gvviY)
throws java.lang.Exception
{
if (null == distR1R1 || null == gvviX || null == gvviY || !(gvviX instanceof
org.drip.spaces.instance.ValidatedR1) || !(gvviY instanceof
org.drip.spaces.instance.ValidatedR1) && !(_funcClassRxToR1 instanceof
org.drip.spaces.functionclass.NormedR1ToNormedR1Finite))
throw new java.lang.Exception ("GeneralizedLearner::structuralRisk => Invalid Inputs");
org.drip.function.definition.R1ToR1 funcRegularizerR1ToR1 = _regularizerFunc.r1Tor1();
if (null == funcRegularizerR1ToR1)
throw new java.lang.Exception ("GeneralizedLearner::structuralRisk => Invalid Inputs");
org.drip.spaces.functionclass.NormedR1ToNormedR1Finite finiteClassR1ToR1 =
(org.drip.spaces.functionclass.NormedR1ToNormedR1Finite) _funcClassRxToR1;
org.drip.spaces.metric.GeneralizedMetricVectorSpace gmvsInput =
finiteClassR1ToR1.inputMetricVectorSpace();
if (gmvsInput instanceof org.drip.spaces.metric.R1Normed)
throw new java.lang.Exception ("GeneralizedLearner::structuralRisk => Invalid Inputs");
org.drip.spaces.metric.GeneralizedMetricVectorSpace gmvsOutput =
finiteClassR1ToR1.outputMetricVectorSpace();
if (gmvsOutput instanceof org.drip.spaces.metric.R1Continuous)
throw new java.lang.Exception ("GeneralizedLearner::structuralRisk => Invalid Inputs");
org.drip.learning.regularization.RegularizerR1ToR1 regularizerR1ToR1 =
org.drip.learning.regularization.RegularizerBuilder.ToR1Continuous (funcRegularizerR1ToR1,
(org.drip.spaces.metric.R1Normed) gmvsInput, (org.drip.spaces.metric.R1Continuous)
gmvsOutput, _regularizerFunc.lambda());
if (null == regularizerR1ToR1)
throw new java.lang.Exception ("GeneralizedLearner::structuralRisk => Invalid Inputs");
return regularizerR1ToR1.structuralRisk (distR1R1, funcLearnerR1ToR1,
((org.drip.spaces.instance.ValidatedR1) gvviX).instance(),
((org.drip.spaces.instance.ValidatedR1) gvviY).instance());
}
@Override public double structuralRisk (
final org.drip.measure.continuous.RdR1 distRdR1,
final org.drip.function.definition.RdToR1 funcLearnerRdToR1,
final org.drip.spaces.instance.GeneralizedValidatedVector gvviX,
final org.drip.spaces.instance.GeneralizedValidatedVector gvviY)
throws java.lang.Exception
{
if (null == distRdR1 || null == gvviX || null == gvviY || !(gvviX instanceof
org.drip.spaces.instance.ValidatedRd) || !(gvviY instanceof
org.drip.spaces.instance.ValidatedR1) && !(_funcClassRxToR1 instanceof
org.drip.spaces.functionclass.NormedR1ToNormedR1Finite))
throw new java.lang.Exception ("GeneralizedLearner::structuralRisk => Invalid Inputs");
org.drip.function.definition.RdToR1 funcRegularizerRdToR1 = _regularizerFunc.rdTor1();
if (null == funcRegularizerRdToR1)
throw new java.lang.Exception ("GeneralizedLearner::structuralRisk => Invalid Inputs");
org.drip.spaces.functionclass.NormedRdToNormedR1Finite finiteClassRdToR1 =
(org.drip.spaces.functionclass.NormedRdToNormedR1Finite) _funcClassRxToR1;
org.drip.spaces.metric.GeneralizedMetricVectorSpace gmvsInput =
finiteClassRdToR1.inputMetricVectorSpace();
if (gmvsInput instanceof org.drip.spaces.metric.RdNormed)
throw new java.lang.Exception ("GeneralizedLearner::structuralRisk => Invalid Inputs");
org.drip.spaces.metric.GeneralizedMetricVectorSpace gmvsOutput =
finiteClassRdToR1.outputMetricVectorSpace();
if (gmvsOutput instanceof org.drip.spaces.metric.R1Continuous)
throw new java.lang.Exception ("GeneralizedLearner::structuralRisk => Invalid Inputs");
org.drip.learning.regularization.RegularizerRdToR1 regularizerRdToR1 =
org.drip.learning.regularization.RegularizerBuilder.ToRdContinuous (funcRegularizerRdToR1,
(org.drip.spaces.metric.RdNormed) gmvsInput, (org.drip.spaces.metric.R1Continuous)
gmvsOutput, _regularizerFunc.lambda());
if (null == regularizerRdToR1)
throw new java.lang.Exception ("GeneralizedLearner::structuralRisk => Invalid Inputs");
return regularizerRdToR1.structuralRisk (distRdR1, funcLearnerRdToR1,
((org.drip.spaces.instance.ValidatedRd) gvviX).instance(),
((org.drip.spaces.instance.ValidatedR1) gvviY).instance());
}
@Override public org.drip.learning.rxtor1.EmpiricalPenaltySupremum supremumStructuralRisk (
final org.drip.measure.continuous.R1R1 distR1R1,
final org.drip.spaces.instance.GeneralizedValidatedVector gvviX,
final org.drip.spaces.instance.GeneralizedValidatedVector gvviY)
{
try {
return new org.drip.learning.rxtor1.EmpiricalPenaltySupremumEstimator
(org.drip.learning.rxtor1.EmpiricalPenaltySupremumEstimator.SUPREMUM_PENALTY_STRUCTURAL_RISK,
this, gvviY, distR1R1, null).supremum (gvviX);
} catch (java.lang.Exception e) {
e.printStackTrace();
}
return null;
}
@Override public org.drip.learning.rxtor1.EmpiricalPenaltySupremum supremumStructuralRisk (
final org.drip.measure.continuous.RdR1 distRdR1,
final org.drip.spaces.instance.GeneralizedValidatedVector gvviX,
final org.drip.spaces.instance.GeneralizedValidatedVector gvviY)
{
try {
return new org.drip.learning.rxtor1.EmpiricalPenaltySupremumEstimator
(org.drip.learning.rxtor1.EmpiricalPenaltySupremumEstimator.SUPREMUM_PENALTY_STRUCTURAL_RISK,
this, gvviY, null, distRdR1).supremum (gvviX);
} catch (java.lang.Exception e) {
e.printStackTrace();
}
return null;
}
@Override public double regularizedRisk (
final org.drip.measure.continuous.R1R1 distR1R1,
final org.drip.function.definition.R1ToR1 funcLearnerR1ToR1,
final org.drip.spaces.instance.GeneralizedValidatedVector gvviX,
final org.drip.spaces.instance.GeneralizedValidatedVector gvviY)
throws java.lang.Exception
{
return empiricalRisk (distR1R1, funcLearnerR1ToR1, gvviX, gvviY) + structuralRisk (distR1R1,
funcLearnerR1ToR1, gvviX, gvviY);
}
@Override public double regularizedRisk (
final org.drip.measure.continuous.RdR1 distRdR1,
final org.drip.function.definition.RdToR1 funcLearnerRdToR1,
final org.drip.spaces.instance.GeneralizedValidatedVector gvviX,
final org.drip.spaces.instance.GeneralizedValidatedVector gvviY)
throws java.lang.Exception
{
return empiricalRisk (distRdR1, funcLearnerRdToR1, gvviX, gvviY) + structuralRisk (distRdR1,
funcLearnerRdToR1, gvviX, gvviY);
}
@Override public org.drip.learning.rxtor1.EmpiricalPenaltySupremum supremumRegularizedRisk (
final org.drip.measure.continuous.R1R1 distR1R1,
final org.drip.spaces.instance.GeneralizedValidatedVector gvviX,
final org.drip.spaces.instance.GeneralizedValidatedVector gvviY)
{
try {
return new org.drip.learning.rxtor1.EmpiricalPenaltySupremumEstimator
(org.drip.learning.rxtor1.EmpiricalPenaltySupremumEstimator.SUPREMUM_PENALTY_REGULARIZED_RISK,
this, gvviY, distR1R1, null).supremum (gvviX);
} catch (java.lang.Exception e) {
e.printStackTrace();
}
return null;
}
@Override public org.drip.learning.rxtor1.EmpiricalPenaltySupremum supremumRegularizedRisk (
final org.drip.measure.continuous.RdR1 distRdR1,
final org.drip.spaces.instance.GeneralizedValidatedVector gvviX,
final org.drip.spaces.instance.GeneralizedValidatedVector gvviY)
{
try {
return new org.drip.learning.rxtor1.EmpiricalPenaltySupremumEstimator
(org.drip.learning.rxtor1.EmpiricalPenaltySupremumEstimator.SUPREMUM_PENALTY_REGULARIZED_RISK,
this, gvviY, null, distRdR1).supremum (gvviX);
} catch (java.lang.Exception e) {
e.printStackTrace();
}
return null;
}
/**
* Retrieve the Covering Number based Deviation Upper Probability Bound Generator
*
* @return The Covering Number based Deviation Upper Probability Bound Generator
*/
public org.drip.learning.bound.CoveringNumberLossBound coveringLossBoundEvaluator()
{
return _funcClassCNLB;
}
/**
* Compute the Upper Bound of the Probability of the Absolute Deviation of the Empirical Mean from the
* Population Mean using the Function Class Supremum Covering Number for General-Purpose Learning
*
* @param iSampleSize The Sample Size
* @param dblEpsilon The Deviation of the Empirical Mean from the Population Mean
* @param bSupremum TRUE To Use the Supremum Metric in place of the Built-in Metric
*
* @return The Upper Bound of the Probability of the Absolute Deviation of the Empirical Mean from the
* Population Mean using the Function Class Supremum Covering Number for General-Purpose Learning
*
* @throws java.lang.Exception Thrown if the Upper Probability Bound cannot be computed
*/
public double genericCoveringProbabilityBound (
final int iSampleSize,
final double dblEpsilon,
final boolean bSupremum)
throws java.lang.Exception
{
return _funcClassCNLB.deviationProbabilityUpperBound (iSampleSize, dblEpsilon) * (bSupremum ?
_funcClassRxToR1.populationSupremumCoveringNumber (dblEpsilon) :
_funcClassRxToR1.populationCoveringNumber (dblEpsilon));
}
/**
* Compute the Minimum Possible Sample Size needed to generate the required Upper Probability Bound for
* the Specified Empirical Deviation using the Covering Number Convergence Bounds.
*
* @param dblEpsilon The Deviation of the Empirical Mean from the Population Mean
* @param dblDeviationUpperProbabilityBound The Upper Bound of the Probability for the given Deviation
* @param bSupremum TRUE To Use the Supremum Metric in place of the Built-in Metric
*
* @return The Minimum Possible Sample Size
*
* @throws java.lang.Exception Thrown if the Minimum Sample Size cannot be computed
*/
public double genericCoveringSampleSize (
final double dblEpsilon,
final double dblDeviationUpperProbabilityBound,
final boolean bSupremum)
throws java.lang.Exception
{
if (!org.drip.numerical.common.NumberUtil.IsValid (dblEpsilon) ||
!org.drip.numerical.common.NumberUtil.IsValid (dblDeviationUpperProbabilityBound))
throw new java.lang.Exception
("GeneralizedLearner::genericCoveringSampleSize => Invalid Inputs");
org.drip.function.definition.R1ToR1 funcDeviationUpperProbabilityBound = new
org.drip.function.definition.R1ToR1 (null) {
@Override public double evaluate (
final double dblSampleSize)
throws java.lang.Exception
{
return genericCoveringProbabilityBound ((int) dblSampleSize, dblEpsilon, bSupremum);
}
};
org.drip.function.r1tor1solver.FixedPointFinderOutput fpfo = new
org.drip.function.r1tor1solver.FixedPointFinderZheng (dblDeviationUpperProbabilityBound,
funcDeviationUpperProbabilityBound, false).findRoot();
if (null == fpfo || !fpfo.containsRoot())
throw new java.lang.Exception
("GeneralizedLearner::genericCoveringSampleSize => Cannot Estimate Minimal Sample Size");
return fpfo.getRoot();
}
/**
* Compute the Sample/Data Dependent Upper Bound of the Probability of the Absolute Deviation between
* the Empirical and the Population Means using the Function Class Supremum Covering Number for
* General-Purpose Learning
*
* @param gvvi The Validated Instance Vector Sequence
* @param iSampleSize The Sample Size
* @param dblEpsilon The Deviation of the Empirical Mean from the Population Mean
* @param bSupremum TRUE To Use the Supremum Metric in place of the Built-in Metric
*
* @return The Sample/Data Dependent Upper Bound of the Probability of the Absolute Deviation between
* the Empirical and the Population Means using the Function Class Supremum Covering Number for
* General-Purpose Learning
*
* @throws java.lang.Exception Thrown if the Upper Probability Bound cannot be computed
*/
public double genericCoveringProbabilityBound (
final org.drip.spaces.instance.GeneralizedValidatedVector gvvi,
final int iSampleSize,
final double dblEpsilon,
final boolean bSupremum)
throws java.lang.Exception
{
return _funcClassCNLB.deviationProbabilityUpperBound (iSampleSize, dblEpsilon) *
lossSampleCoveringNumber (gvvi, dblEpsilon, bSupremum);
}
/**
* Compute the Minimum Possible Sample Size needed to generate the required Upper Probability Bound for
* the Specified Empirical Deviation using the Covering Number Convergence Bounds.
*
* @param gvvi The Validated Instance Vector Sequence
* @param dblEpsilon The Deviation of the Empirical Mean from the Population Mean
* @param dblDeviationUpperProbabilityBound The Upper Bound of the Probability for the given Deviation
* @param bSupremum TRUE To Use the Supremum Metric in place of the Built-in Metric
*
* @return The Minimum Possible Sample Size
*
* @throws java.lang.Exception Thrown if the Minimum Sample Size cannot be computed
*/
public double genericCoveringSampleSize (
final org.drip.spaces.instance.GeneralizedValidatedVector gvvi,
final double dblEpsilon,
final double dblDeviationUpperProbabilityBound,
final boolean bSupremum)
throws java.lang.Exception
{
if (null == gvvi || !org.drip.numerical.common.NumberUtil.IsValid (dblEpsilon) ||
!org.drip.numerical.common.NumberUtil.IsValid (dblDeviationUpperProbabilityBound))
throw new java.lang.Exception
("GeneralizedLearner::genericCoveringSampleSize => Invalid Inputs");
org.drip.function.definition.R1ToR1 funcDeviationUpperProbabilityBound = new
org.drip.function.definition.R1ToR1 (null) {
@Override public double evaluate (
final double dblSampleSize)
throws java.lang.Exception
{
return genericCoveringProbabilityBound (gvvi, (int) dblSampleSize, dblEpsilon, bSupremum);
}
};
org.drip.function.r1tor1solver.FixedPointFinderOutput fpfo = new
org.drip.function.r1tor1solver.FixedPointFinderZheng (dblDeviationUpperProbabilityBound,
funcDeviationUpperProbabilityBound, false).findRoot();
if (null == fpfo || !fpfo.containsRoot())
throw new java.lang.Exception
("GeneralizedLearner::genericCoveringSampleSize => Cannot Estimate Minimal Sample Size");
return fpfo.getRoot();
}
/**
* Compute the Upper Bound of the Probability of the Absolute Deviation between the Empirical and the
* Population Means using the Function Class Supremum Covering Number for Regression Learning
*
* @param iSampleSize The Sample Size
* @param dblEpsilon The Deviation of the Empirical Mean from the Population Mean
* @param bSupremum TRUE To Use the Supremum Metric in place of the Built-in Metric
*
* @return The Upper Bound of the Probability of the Absolute Deviation between the Empirical and the
* Population Means using the Function Class Supremum Covering Number for Regression Learning
*
* @throws java.lang.Exception Thrown if the Upper Probability Bound cannot be computed
*/
public double regressorCoveringProbabilityBound (
final int iSampleSize,
final double dblEpsilon,
final boolean bSupremum)
throws java.lang.Exception
{
if (!org.drip.numerical.common.NumberUtil.IsValid (dblEpsilon) || 0. >= dblEpsilon || iSampleSize < (2. /
(dblEpsilon * dblEpsilon)))
throw new java.lang.Exception
("GeneralizedLearner::regressorCoveringProbabilityBound => Invalid Inputs");
org.drip.function.definition.R1ToR1 funcSampleCoefficient = new
org.drip.function.definition.R1ToR1 (null) {
@Override public double evaluate (
final double dblSampleSize)
throws java.lang.Exception
{
return 12. * dblSampleSize;
}
};
return (new org.drip.learning.bound.CoveringNumberLossBound (funcSampleCoefficient, 2.,
36.)).deviationProbabilityUpperBound (iSampleSize, dblEpsilon) * (bSupremum ?
_funcClassRxToR1.populationSupremumCoveringNumber (dblEpsilon / 6.) :
_funcClassRxToR1.populationCoveringNumber (dblEpsilon / 6.));
}
/**
* Compute the Minimum Possible Sample Size needed to generate the required Upper Probability Bound for
* the Specified Empirical Deviation using the Covering Number Convergence Bounds for Regression
* Learning.
*
* @param dblEpsilon The Deviation of the Empirical Mean from the Population Mean
* @param dblDeviationUpperProbabilityBound The Upper Bound of the Probability for the given Deviation
* @param bSupremum TRUE To Use the Supremum Metric in place of the Built-in Metric
*
* @return The Minimum Possible Sample Size
*
* @throws java.lang.Exception Thrown if the Minimum Sample Size cannot be computed
*/
public double regressorCoveringSampleSize (
final double dblEpsilon,
final double dblDeviationUpperProbabilityBound,
final boolean bSupremum)
throws java.lang.Exception
{
if (!org.drip.numerical.common.NumberUtil.IsValid (dblEpsilon) ||
!org.drip.numerical.common.NumberUtil.IsValid (dblDeviationUpperProbabilityBound))
throw new java.lang.Exception
("GeneralizedLearner::regressorCoveringSampleSize => Invalid Inputs");
org.drip.function.definition.R1ToR1 funcDeviationUpperProbabilityBound = new
org.drip.function.definition.R1ToR1 (null) {
@Override public double evaluate (
final double dblSampleSize)
throws java.lang.Exception
{
return regressorCoveringProbabilityBound ((int) dblSampleSize, dblEpsilon, bSupremum);
}
};
org.drip.function.r1tor1solver.FixedPointFinderOutput fpfo = new
org.drip.function.r1tor1solver.FixedPointFinderZheng (dblDeviationUpperProbabilityBound,
funcDeviationUpperProbabilityBound, false).findRoot();
if (null == fpfo || !fpfo.containsRoot())
throw new java.lang.Exception
("GeneralizedLearner::regressorCoveringSampleSize => Cannot Estimate Minimal Sample Size");
return fpfo.getRoot();
}
/**
* Compute the Sample/Data Dependent Upper Bound of the Probability of the Absolute Deviation between
* the Empirical and the Population Means using the Function Class Supremum Covering Number for
* Regression Learning
*
* @param gvvi The Validated Instance Vector Sequence
* @param iSampleSize The Sample Size
* @param dblEpsilon The Deviation of the Empirical Mean from the Population Mean
* @param bSupremum TRUE To Use the Supremum Metric in place of the Built-in Metric
*
* @return The Sample/Data Dependent Upper Bound of the Probability of the Absolute Deviation between
* the Empirical and the Population Means using the Function Class Supremum Covering Number for
* Regression Learning
*
* @throws java.lang.Exception Thrown if the Upper Probability Bound cannot be computed
*/
public double regressorCoveringProbabilityBound (
final org.drip.spaces.instance.GeneralizedValidatedVector gvvi,
final int iSampleSize,
final double dblEpsilon,
final boolean bSupremum)
throws java.lang.Exception
{
if (!org.drip.numerical.common.NumberUtil.IsValid (dblEpsilon) || 0. >= dblEpsilon || iSampleSize < (2. /
(dblEpsilon * dblEpsilon)))
throw new java.lang.Exception
("GeneralizedLearner::regressorCoveringProbabilityBound => Invalid Inputs");
org.drip.function.definition.R1ToR1 funcSampleCoefficient = new
org.drip.function.definition.R1ToR1 (null) {
@Override public double evaluate (
final double dblSampleSize)
throws java.lang.Exception
{
return 12. * dblSampleSize;
}
};
return (new org.drip.learning.bound.CoveringNumberLossBound (funcSampleCoefficient, 2.,
36.)).deviationProbabilityUpperBound (iSampleSize, dblEpsilon) * lossSampleCoveringNumber (gvvi,
dblEpsilon / 6., bSupremum);
}
/**
* Compute the Minimum Possible Sample Size needed to generate the required Upper Probability Bound for
* the Specified Empirical Deviation using the Covering Number Convergence Bounds for Regression
* Learning.
*
* @param gvvi The Validated Instance Vector Sequence
* @param dblEpsilon The Deviation of the Empirical Mean from the Population Mean
* @param dblDeviationUpperProbabilityBound The Upper Bound of the Probability for the given Deviation
* @param bSupremum TRUE To Use the Supremum Metric in place of the Built-in Metric
*
* @return The Minimum Possible Sample Size
*
* @throws java.lang.Exception Thrown if the Minimum Sample Size cannot be computed
*/
public double regressorCoveringSampleSize (
final org.drip.spaces.instance.GeneralizedValidatedVector gvvi,
final double dblEpsilon,
final double dblDeviationUpperProbabilityBound,
final boolean bSupremum)
throws java.lang.Exception
{
if (null == gvvi || !org.drip.numerical.common.NumberUtil.IsValid (dblEpsilon) ||
!org.drip.numerical.common.NumberUtil.IsValid (dblDeviationUpperProbabilityBound))
throw new java.lang.Exception
("GeneralizedLearner::regressorCoveringSampleSize => Invalid Inputs");
org.drip.function.definition.R1ToR1 funcDeviationUpperProbabilityBound = new
org.drip.function.definition.R1ToR1 (null) {
@Override public double evaluate (
final double dblSampleSize)
throws java.lang.Exception
{
return regressorCoveringProbabilityBound (gvvi, (int) dblSampleSize, dblEpsilon, bSupremum);
}
};
org.drip.function.r1tor1solver.FixedPointFinderOutput fpfo = new
org.drip.function.r1tor1solver.FixedPointFinderZheng (dblDeviationUpperProbabilityBound,
funcDeviationUpperProbabilityBound, false).findRoot();
if (null == fpfo || !fpfo.containsRoot())
throw new java.lang.Exception
("GeneralizedLearner::regressorCoveringSampleSize => Cannot Estimate Minimal Sample Size");
return fpfo.getRoot();
}
}