GeneralizedLearner.java
- package org.drip.learning.rxtor1;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2020 Lakshmi Krishnamurthy
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- * Copyright (C) 2018 Lakshmi Krishnamurthy
- * Copyright (C) 2017 Lakshmi Krishnamurthy
- * Copyright (C) 2016 Lakshmi Krishnamurthy
- * Copyright (C) 2015 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
- * asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
- * analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
- * equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
- * numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
- * and computational support.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three modules:
- *
- * - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
- *
- * DROP Product Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Loan Analytics
- * - Transaction Cost Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Asset Liability Management Analytics
- * - Capital Estimation Analytics
- * - Exposure Analytics
- * - Margin Analytics
- * - XVA Analytics
- *
- * DROP Computational Core implements libraries for the following:
- * - Algorithm Support
- * - Computation Support
- * - Function Analysis
- * - Model Validation
- * - Numerical Analysis
- * - Numerical Optimizer
- * - Spline Builder
- * - Statistical Learning
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>GeneralizedLearner</i> implements the Learner Class that holds the Space of Normed R<sup>x</sup> To
- * Normed R<sup>1</sup> Learning Functions along with their Custom Empirical Loss. Class-Specific Asymptotic
- * Sample, Covering Number based Upper Probability Bounds and other Parameters are also maintained.
- *
- * <br><br>
- * The References are:
- *
- * <br><br>
- * <ul>
- * <li>
- * Alon, N., S. Ben-David, N. Cesa Bianchi, and D. Haussler (1997): Scale-sensitive Dimensions, Uniform
- * Convergence, and Learnability <i>Journal of Association of Computational Machinery</i> <b>44
- * (4)</b> 615-631
- * </li>
- * <li>
- * Anthony, M., and P. L. Bartlett (1999): <i>Artificial Neural Network Learning - Theoretical
- * Foundations</i> <b>Cambridge University Press</b> Cambridge, UK
- * </li>
- * <li>
- * Kearns, M. J., R. E. Schapire, and L. M. Sellie (1994): <i>Towards Efficient Agnostic Learning</i>
- * Machine Learning <b>17 (2)</b> 115-141
- * </li>
- * <li>
- * Lee, W. S., P. L. Bartlett, and R. C. Williamson (1998): The Importance of Convexity in Learning with
- * Squared Loss <i>IEEE Transactions on Information Theory</i> <b>44</b> 1974-1980
- * </li>
- * <li>
- * Vapnik, V. N. (1998): <i>Statistical learning Theory</i> <b>Wiley</b> New York
- * </li>
- * </ul>
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/StatisticalLearningLibrary.md">Statistical Learning</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/learning">Agnostic Learning Bounds under Empirical Loss Minimization Schemes</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/learning/rxtor1">Statistical Learning Empirical Loss Penalizer</a></li>
- * </ul>
- *
- * @author Lakshmi Krishnamurthy
- */
- public abstract class GeneralizedLearner implements org.drip.learning.rxtor1.EmpiricalLearningMetricEstimator
- {
- private org.drip.learning.bound.CoveringNumberLossBound _funcClassCNLB = null;
- private org.drip.spaces.functionclass.NormedRxToNormedR1Finite _funcClassRxToR1 = null;
- private org.drip.learning.regularization.RegularizationFunction _regularizerFunc = null;
- /**
- * GeneralizedLearner Constructor
- *
- * @param funcClassRxToR1 R^x To R^1 Function Class
- * @param funcClassCNLB The Function Class Covering Number based Deviation Upper Probability Bound
- * Generator
- * @param regularizerFunc The Regularizer Function
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public GeneralizedLearner (
- final org.drip.spaces.functionclass.NormedRxToNormedR1Finite funcClassRxToR1,
- final org.drip.learning.bound.CoveringNumberLossBound funcClassCNLB,
- final org.drip.learning.regularization.RegularizationFunction regularizerFunc)
- throws java.lang.Exception
- {
- if (null == (_funcClassRxToR1 = funcClassRxToR1) || null == (_funcClassCNLB = funcClassCNLB) || null
- == (_regularizerFunc = regularizerFunc))
- throw new java.lang.Exception ("GeneralizedLearner ctr: Invalid Inputs");
- }
- @Override public org.drip.spaces.functionclass.NormedRxToNormedR1Finite functionClass()
- {
- return _funcClassRxToR1;
- }
- @Override public org.drip.learning.regularization.RegularizationFunction regularizerFunction()
- {
- return _regularizerFunc;
- }
- @Override public org.drip.learning.rxtor1.EmpiricalPenaltySupremum supremumEmpiricalLoss (
- final org.drip.spaces.instance.GeneralizedValidatedVector gvviX,
- final org.drip.spaces.instance.GeneralizedValidatedVector gvviY)
- {
- try {
- return new org.drip.learning.rxtor1.EmpiricalPenaltySupremumEstimator
- (org.drip.learning.rxtor1.EmpiricalPenaltySupremumEstimator.SUPREMUM_PENALTY_EMPIRICAL_LOSS,
- this, gvviY, null, null).supremum (gvviX);
- } catch (java.lang.Exception e) {
- e.printStackTrace();
- }
- return null;
- }
- @Override public double structuralLoss (
- final org.drip.function.definition.R1ToR1 funcLearnerR1ToR1,
- final org.drip.spaces.instance.GeneralizedValidatedVector gvvi)
- throws java.lang.Exception
- {
- if (null == gvvi || !(gvvi instanceof org.drip.spaces.instance.ValidatedR1) &&
- (_funcClassRxToR1 instanceof org.drip.spaces.functionclass.NormedR1ToNormedR1Finite))
- throw new java.lang.Exception ("GeneralizedLearner::structuralLoss => Invalid Inputs");
- org.drip.function.definition.R1ToR1 funcRegularizerR1ToR1 = _regularizerFunc.r1Tor1();
- if (null == funcRegularizerR1ToR1)
- throw new java.lang.Exception ("GeneralizedLearner::structuralLoss => Invalid Inputs");
- org.drip.spaces.functionclass.NormedR1ToNormedR1Finite finiteClassR1ToR1 =
- (org.drip.spaces.functionclass.NormedR1ToNormedR1Finite) _funcClassRxToR1;
- org.drip.spaces.metric.GeneralizedMetricVectorSpace gmvsInput =
- finiteClassR1ToR1.inputMetricVectorSpace();
- if (gmvsInput instanceof org.drip.spaces.metric.R1Normed)
- throw new java.lang.Exception ("GeneralizedLearner::structuralLoss => Invalid Inputs");
- org.drip.spaces.metric.GeneralizedMetricVectorSpace gmvsOutput =
- finiteClassR1ToR1.outputMetricVectorSpace();
- if (gmvsOutput instanceof org.drip.spaces.metric.R1Continuous)
- throw new java.lang.Exception ("GeneralizedLearner::structuralLoss => Invalid Inputs");
- org.drip.learning.regularization.RegularizerR1ToR1 regularizerR1ToR1 =
- org.drip.learning.regularization.RegularizerBuilder.ToR1Continuous (funcRegularizerR1ToR1,
- (org.drip.spaces.metric.R1Normed) gmvsInput, (org.drip.spaces.metric.R1Continuous)
- gmvsOutput, _regularizerFunc.lambda());
- if (null == regularizerR1ToR1)
- throw new java.lang.Exception ("GeneralizedLearner::structuralLoss => Invalid Inputs");
- return regularizerR1ToR1.structuralLoss (funcLearnerR1ToR1, ((org.drip.spaces.instance.ValidatedR1)
- gvvi).instance());
- }
- @Override public double structuralLoss (
- final org.drip.function.definition.RdToR1 funcLearnerRdToR1,
- final org.drip.spaces.instance.GeneralizedValidatedVector gvvi)
- throws java.lang.Exception
- {
- if (null == gvvi || !(gvvi instanceof org.drip.spaces.instance.ValidatedRd) &&
- (_funcClassRxToR1 instanceof org.drip.spaces.functionclass.NormedRdToNormedR1Finite))
- throw new java.lang.Exception ("GeneralizedLearner::structuralLoss => Invalid Inputs");
- org.drip.function.definition.RdToR1 funcRegularizerRdToR1 = _regularizerFunc.rdTor1();
- if (null == funcRegularizerRdToR1)
- throw new java.lang.Exception ("GeneralizedLearner::structuralLoss => Invalid Inputs");
- org.drip.spaces.functionclass.NormedRdToNormedR1Finite finiteClassRdToR1 =
- (org.drip.spaces.functionclass.NormedRdToNormedR1Finite) _funcClassRxToR1;
- org.drip.spaces.metric.GeneralizedMetricVectorSpace gmvsInput =
- finiteClassRdToR1.inputMetricVectorSpace();
- if (gmvsInput instanceof org.drip.spaces.metric.RdNormed)
- throw new java.lang.Exception ("GeneralizedLearner::structuralLoss => Invalid Inputs");
- org.drip.spaces.metric.GeneralizedMetricVectorSpace gmvsOutput =
- finiteClassRdToR1.outputMetricVectorSpace();
- if (gmvsOutput instanceof org.drip.spaces.metric.R1Continuous)
- throw new java.lang.Exception ("GeneralizedLearner::structuralLoss => Invalid Inputs");
- org.drip.learning.regularization.RegularizerRdToR1 regularizerRdToR1 =
- org.drip.learning.regularization.RegularizerBuilder.ToRdContinuous (funcRegularizerRdToR1,
- (org.drip.spaces.metric.RdNormed) gmvsInput, (org.drip.spaces.metric.R1Continuous)
- gmvsOutput, _regularizerFunc.lambda());
- if (null == regularizerRdToR1)
- throw new java.lang.Exception ("GeneralizedLearner::structuralLoss => Invalid Inputs");
- return regularizerRdToR1.structuralLoss (funcLearnerRdToR1, ((org.drip.spaces.instance.ValidatedRd)
- gvvi).instance());
- }
- @Override public org.drip.learning.rxtor1.EmpiricalPenaltySupremum supremumStructuralLoss (
- final org.drip.spaces.instance.GeneralizedValidatedVector gvviX)
- {
- try {
- return new org.drip.learning.rxtor1.EmpiricalPenaltySupremumEstimator
- (org.drip.learning.rxtor1.EmpiricalPenaltySupremumEstimator.SUPREMUM_PENALTY_STRUCTURAL_LOSS,
- this, null, null, null).supremum (gvviX);
- } catch (java.lang.Exception e) {
- e.printStackTrace();
- }
- return null;
- }
- @Override public double regularizedLoss (
- final org.drip.function.definition.R1ToR1 funcLearnerR1ToR1,
- final org.drip.spaces.instance.GeneralizedValidatedVector gvviX,
- final org.drip.spaces.instance.GeneralizedValidatedVector gvviY)
- throws java.lang.Exception
- {
- return empiricalLoss (funcLearnerR1ToR1, gvviX, gvviY) + structuralLoss (funcLearnerR1ToR1, gvviX);
- }
- @Override public double regularizedLoss (
- final org.drip.function.definition.RdToR1 funcLearnerRdToR1,
- final org.drip.spaces.instance.GeneralizedValidatedVector gvviX,
- final org.drip.spaces.instance.GeneralizedValidatedVector gvviY)
- throws java.lang.Exception
- {
- return empiricalLoss (funcLearnerRdToR1, gvviX, gvviY) + structuralLoss (funcLearnerRdToR1, gvviX);
- }
- @Override public org.drip.learning.rxtor1.EmpiricalPenaltySupremum supremumRegularizedLoss (
- final org.drip.spaces.instance.GeneralizedValidatedVector gvviX,
- final org.drip.spaces.instance.GeneralizedValidatedVector gvviY)
- {
- try {
- return new org.drip.learning.rxtor1.EmpiricalPenaltySupremumEstimator
- (org.drip.learning.rxtor1.EmpiricalPenaltySupremumEstimator.SUPREMUM_PENALTY_REGULARIZED_LOSS,
- this, gvviY, null, null).supremum (gvviX);
- } catch (java.lang.Exception e) {
- e.printStackTrace();
- }
- return null;
- }
- @Override public org.drip.learning.rxtor1.EmpiricalPenaltySupremum supremumEmpiricalRisk (
- final org.drip.measure.continuous.R1R1 distR1R1,
- final org.drip.spaces.instance.GeneralizedValidatedVector gvviX,
- final org.drip.spaces.instance.GeneralizedValidatedVector gvviY)
- {
- try {
- return new org.drip.learning.rxtor1.EmpiricalPenaltySupremumEstimator
- (org.drip.learning.rxtor1.EmpiricalPenaltySupremumEstimator.SUPREMUM_PENALTY_EMPIRICAL_RISK,
- this, gvviY, distR1R1, null).supremum (gvviX);
- } catch (java.lang.Exception e) {
- e.printStackTrace();
- }
- return null;
- }
- @Override public org.drip.learning.rxtor1.EmpiricalPenaltySupremum supremumEmpiricalRisk (
- final org.drip.measure.continuous.RdR1 distRdR1,
- final org.drip.spaces.instance.GeneralizedValidatedVector gvviX,
- final org.drip.spaces.instance.GeneralizedValidatedVector gvviY)
- {
- try {
- return new org.drip.learning.rxtor1.EmpiricalPenaltySupremumEstimator
- (org.drip.learning.rxtor1.EmpiricalPenaltySupremumEstimator.SUPREMUM_PENALTY_EMPIRICAL_RISK,
- this, gvviY, null, distRdR1).supremum (gvviX);
- } catch (java.lang.Exception e) {
- e.printStackTrace();
- }
- return null;
- }
- @Override public double structuralRisk (
- final org.drip.measure.continuous.R1R1 distR1R1,
- final org.drip.function.definition.R1ToR1 funcLearnerR1ToR1,
- final org.drip.spaces.instance.GeneralizedValidatedVector gvviX,
- final org.drip.spaces.instance.GeneralizedValidatedVector gvviY)
- throws java.lang.Exception
- {
- if (null == distR1R1 || null == gvviX || null == gvviY || !(gvviX instanceof
- org.drip.spaces.instance.ValidatedR1) || !(gvviY instanceof
- org.drip.spaces.instance.ValidatedR1) && !(_funcClassRxToR1 instanceof
- org.drip.spaces.functionclass.NormedR1ToNormedR1Finite))
- throw new java.lang.Exception ("GeneralizedLearner::structuralRisk => Invalid Inputs");
- org.drip.function.definition.R1ToR1 funcRegularizerR1ToR1 = _regularizerFunc.r1Tor1();
- if (null == funcRegularizerR1ToR1)
- throw new java.lang.Exception ("GeneralizedLearner::structuralRisk => Invalid Inputs");
- org.drip.spaces.functionclass.NormedR1ToNormedR1Finite finiteClassR1ToR1 =
- (org.drip.spaces.functionclass.NormedR1ToNormedR1Finite) _funcClassRxToR1;
- org.drip.spaces.metric.GeneralizedMetricVectorSpace gmvsInput =
- finiteClassR1ToR1.inputMetricVectorSpace();
- if (gmvsInput instanceof org.drip.spaces.metric.R1Normed)
- throw new java.lang.Exception ("GeneralizedLearner::structuralRisk => Invalid Inputs");
- org.drip.spaces.metric.GeneralizedMetricVectorSpace gmvsOutput =
- finiteClassR1ToR1.outputMetricVectorSpace();
- if (gmvsOutput instanceof org.drip.spaces.metric.R1Continuous)
- throw new java.lang.Exception ("GeneralizedLearner::structuralRisk => Invalid Inputs");
- org.drip.learning.regularization.RegularizerR1ToR1 regularizerR1ToR1 =
- org.drip.learning.regularization.RegularizerBuilder.ToR1Continuous (funcRegularizerR1ToR1,
- (org.drip.spaces.metric.R1Normed) gmvsInput, (org.drip.spaces.metric.R1Continuous)
- gmvsOutput, _regularizerFunc.lambda());
- if (null == regularizerR1ToR1)
- throw new java.lang.Exception ("GeneralizedLearner::structuralRisk => Invalid Inputs");
- return regularizerR1ToR1.structuralRisk (distR1R1, funcLearnerR1ToR1,
- ((org.drip.spaces.instance.ValidatedR1) gvviX).instance(),
- ((org.drip.spaces.instance.ValidatedR1) gvviY).instance());
- }
- @Override public double structuralRisk (
- final org.drip.measure.continuous.RdR1 distRdR1,
- final org.drip.function.definition.RdToR1 funcLearnerRdToR1,
- final org.drip.spaces.instance.GeneralizedValidatedVector gvviX,
- final org.drip.spaces.instance.GeneralizedValidatedVector gvviY)
- throws java.lang.Exception
- {
- if (null == distRdR1 || null == gvviX || null == gvviY || !(gvviX instanceof
- org.drip.spaces.instance.ValidatedRd) || !(gvviY instanceof
- org.drip.spaces.instance.ValidatedR1) && !(_funcClassRxToR1 instanceof
- org.drip.spaces.functionclass.NormedR1ToNormedR1Finite))
- throw new java.lang.Exception ("GeneralizedLearner::structuralRisk => Invalid Inputs");
- org.drip.function.definition.RdToR1 funcRegularizerRdToR1 = _regularizerFunc.rdTor1();
- if (null == funcRegularizerRdToR1)
- throw new java.lang.Exception ("GeneralizedLearner::structuralRisk => Invalid Inputs");
- org.drip.spaces.functionclass.NormedRdToNormedR1Finite finiteClassRdToR1 =
- (org.drip.spaces.functionclass.NormedRdToNormedR1Finite) _funcClassRxToR1;
- org.drip.spaces.metric.GeneralizedMetricVectorSpace gmvsInput =
- finiteClassRdToR1.inputMetricVectorSpace();
- if (gmvsInput instanceof org.drip.spaces.metric.RdNormed)
- throw new java.lang.Exception ("GeneralizedLearner::structuralRisk => Invalid Inputs");
- org.drip.spaces.metric.GeneralizedMetricVectorSpace gmvsOutput =
- finiteClassRdToR1.outputMetricVectorSpace();
- if (gmvsOutput instanceof org.drip.spaces.metric.R1Continuous)
- throw new java.lang.Exception ("GeneralizedLearner::structuralRisk => Invalid Inputs");
- org.drip.learning.regularization.RegularizerRdToR1 regularizerRdToR1 =
- org.drip.learning.regularization.RegularizerBuilder.ToRdContinuous (funcRegularizerRdToR1,
- (org.drip.spaces.metric.RdNormed) gmvsInput, (org.drip.spaces.metric.R1Continuous)
- gmvsOutput, _regularizerFunc.lambda());
- if (null == regularizerRdToR1)
- throw new java.lang.Exception ("GeneralizedLearner::structuralRisk => Invalid Inputs");
- return regularizerRdToR1.structuralRisk (distRdR1, funcLearnerRdToR1,
- ((org.drip.spaces.instance.ValidatedRd) gvviX).instance(),
- ((org.drip.spaces.instance.ValidatedR1) gvviY).instance());
- }
- @Override public org.drip.learning.rxtor1.EmpiricalPenaltySupremum supremumStructuralRisk (
- final org.drip.measure.continuous.R1R1 distR1R1,
- final org.drip.spaces.instance.GeneralizedValidatedVector gvviX,
- final org.drip.spaces.instance.GeneralizedValidatedVector gvviY)
- {
- try {
- return new org.drip.learning.rxtor1.EmpiricalPenaltySupremumEstimator
- (org.drip.learning.rxtor1.EmpiricalPenaltySupremumEstimator.SUPREMUM_PENALTY_STRUCTURAL_RISK,
- this, gvviY, distR1R1, null).supremum (gvviX);
- } catch (java.lang.Exception e) {
- e.printStackTrace();
- }
- return null;
- }
- @Override public org.drip.learning.rxtor1.EmpiricalPenaltySupremum supremumStructuralRisk (
- final org.drip.measure.continuous.RdR1 distRdR1,
- final org.drip.spaces.instance.GeneralizedValidatedVector gvviX,
- final org.drip.spaces.instance.GeneralizedValidatedVector gvviY)
- {
- try {
- return new org.drip.learning.rxtor1.EmpiricalPenaltySupremumEstimator
- (org.drip.learning.rxtor1.EmpiricalPenaltySupremumEstimator.SUPREMUM_PENALTY_STRUCTURAL_RISK,
- this, gvviY, null, distRdR1).supremum (gvviX);
- } catch (java.lang.Exception e) {
- e.printStackTrace();
- }
- return null;
- }
- @Override public double regularizedRisk (
- final org.drip.measure.continuous.R1R1 distR1R1,
- final org.drip.function.definition.R1ToR1 funcLearnerR1ToR1,
- final org.drip.spaces.instance.GeneralizedValidatedVector gvviX,
- final org.drip.spaces.instance.GeneralizedValidatedVector gvviY)
- throws java.lang.Exception
- {
- return empiricalRisk (distR1R1, funcLearnerR1ToR1, gvviX, gvviY) + structuralRisk (distR1R1,
- funcLearnerR1ToR1, gvviX, gvviY);
- }
- @Override public double regularizedRisk (
- final org.drip.measure.continuous.RdR1 distRdR1,
- final org.drip.function.definition.RdToR1 funcLearnerRdToR1,
- final org.drip.spaces.instance.GeneralizedValidatedVector gvviX,
- final org.drip.spaces.instance.GeneralizedValidatedVector gvviY)
- throws java.lang.Exception
- {
- return empiricalRisk (distRdR1, funcLearnerRdToR1, gvviX, gvviY) + structuralRisk (distRdR1,
- funcLearnerRdToR1, gvviX, gvviY);
- }
- @Override public org.drip.learning.rxtor1.EmpiricalPenaltySupremum supremumRegularizedRisk (
- final org.drip.measure.continuous.R1R1 distR1R1,
- final org.drip.spaces.instance.GeneralizedValidatedVector gvviX,
- final org.drip.spaces.instance.GeneralizedValidatedVector gvviY)
- {
- try {
- return new org.drip.learning.rxtor1.EmpiricalPenaltySupremumEstimator
- (org.drip.learning.rxtor1.EmpiricalPenaltySupremumEstimator.SUPREMUM_PENALTY_REGULARIZED_RISK,
- this, gvviY, distR1R1, null).supremum (gvviX);
- } catch (java.lang.Exception e) {
- e.printStackTrace();
- }
- return null;
- }
- @Override public org.drip.learning.rxtor1.EmpiricalPenaltySupremum supremumRegularizedRisk (
- final org.drip.measure.continuous.RdR1 distRdR1,
- final org.drip.spaces.instance.GeneralizedValidatedVector gvviX,
- final org.drip.spaces.instance.GeneralizedValidatedVector gvviY)
- {
- try {
- return new org.drip.learning.rxtor1.EmpiricalPenaltySupremumEstimator
- (org.drip.learning.rxtor1.EmpiricalPenaltySupremumEstimator.SUPREMUM_PENALTY_REGULARIZED_RISK,
- this, gvviY, null, distRdR1).supremum (gvviX);
- } catch (java.lang.Exception e) {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Retrieve the Covering Number based Deviation Upper Probability Bound Generator
- *
- * @return The Covering Number based Deviation Upper Probability Bound Generator
- */
- public org.drip.learning.bound.CoveringNumberLossBound coveringLossBoundEvaluator()
- {
- return _funcClassCNLB;
- }
- /**
- * Compute the Upper Bound of the Probability of the Absolute Deviation of the Empirical Mean from the
- * Population Mean using the Function Class Supremum Covering Number for General-Purpose Learning
- *
- * @param iSampleSize The Sample Size
- * @param dblEpsilon The Deviation of the Empirical Mean from the Population Mean
- * @param bSupremum TRUE To Use the Supremum Metric in place of the Built-in Metric
- *
- * @return The Upper Bound of the Probability of the Absolute Deviation of the Empirical Mean from the
- * Population Mean using the Function Class Supremum Covering Number for General-Purpose Learning
- *
- * @throws java.lang.Exception Thrown if the Upper Probability Bound cannot be computed
- */
- public double genericCoveringProbabilityBound (
- final int iSampleSize,
- final double dblEpsilon,
- final boolean bSupremum)
- throws java.lang.Exception
- {
- return _funcClassCNLB.deviationProbabilityUpperBound (iSampleSize, dblEpsilon) * (bSupremum ?
- _funcClassRxToR1.populationSupremumCoveringNumber (dblEpsilon) :
- _funcClassRxToR1.populationCoveringNumber (dblEpsilon));
- }
- /**
- * Compute the Minimum Possible Sample Size needed to generate the required Upper Probability Bound for
- * the Specified Empirical Deviation using the Covering Number Convergence Bounds.
- *
- * @param dblEpsilon The Deviation of the Empirical Mean from the Population Mean
- * @param dblDeviationUpperProbabilityBound The Upper Bound of the Probability for the given Deviation
- * @param bSupremum TRUE To Use the Supremum Metric in place of the Built-in Metric
- *
- * @return The Minimum Possible Sample Size
- *
- * @throws java.lang.Exception Thrown if the Minimum Sample Size cannot be computed
- */
- public double genericCoveringSampleSize (
- final double dblEpsilon,
- final double dblDeviationUpperProbabilityBound,
- final boolean bSupremum)
- throws java.lang.Exception
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (dblEpsilon) ||
- !org.drip.numerical.common.NumberUtil.IsValid (dblDeviationUpperProbabilityBound))
- throw new java.lang.Exception
- ("GeneralizedLearner::genericCoveringSampleSize => Invalid Inputs");
- org.drip.function.definition.R1ToR1 funcDeviationUpperProbabilityBound = new
- org.drip.function.definition.R1ToR1 (null) {
- @Override public double evaluate (
- final double dblSampleSize)
- throws java.lang.Exception
- {
- return genericCoveringProbabilityBound ((int) dblSampleSize, dblEpsilon, bSupremum);
- }
- };
- org.drip.function.r1tor1solver.FixedPointFinderOutput fpfo = new
- org.drip.function.r1tor1solver.FixedPointFinderZheng (dblDeviationUpperProbabilityBound,
- funcDeviationUpperProbabilityBound, false).findRoot();
- if (null == fpfo || !fpfo.containsRoot())
- throw new java.lang.Exception
- ("GeneralizedLearner::genericCoveringSampleSize => Cannot Estimate Minimal Sample Size");
- return fpfo.getRoot();
- }
- /**
- * Compute the Sample/Data Dependent Upper Bound of the Probability of the Absolute Deviation between
- * the Empirical and the Population Means using the Function Class Supremum Covering Number for
- * General-Purpose Learning
- *
- * @param gvvi The Validated Instance Vector Sequence
- * @param iSampleSize The Sample Size
- * @param dblEpsilon The Deviation of the Empirical Mean from the Population Mean
- * @param bSupremum TRUE To Use the Supremum Metric in place of the Built-in Metric
- *
- * @return The Sample/Data Dependent Upper Bound of the Probability of the Absolute Deviation between
- * the Empirical and the Population Means using the Function Class Supremum Covering Number for
- * General-Purpose Learning
- *
- * @throws java.lang.Exception Thrown if the Upper Probability Bound cannot be computed
- */
- public double genericCoveringProbabilityBound (
- final org.drip.spaces.instance.GeneralizedValidatedVector gvvi,
- final int iSampleSize,
- final double dblEpsilon,
- final boolean bSupremum)
- throws java.lang.Exception
- {
- return _funcClassCNLB.deviationProbabilityUpperBound (iSampleSize, dblEpsilon) *
- lossSampleCoveringNumber (gvvi, dblEpsilon, bSupremum);
- }
- /**
- * Compute the Minimum Possible Sample Size needed to generate the required Upper Probability Bound for
- * the Specified Empirical Deviation using the Covering Number Convergence Bounds.
- *
- * @param gvvi The Validated Instance Vector Sequence
- * @param dblEpsilon The Deviation of the Empirical Mean from the Population Mean
- * @param dblDeviationUpperProbabilityBound The Upper Bound of the Probability for the given Deviation
- * @param bSupremum TRUE To Use the Supremum Metric in place of the Built-in Metric
- *
- * @return The Minimum Possible Sample Size
- *
- * @throws java.lang.Exception Thrown if the Minimum Sample Size cannot be computed
- */
- public double genericCoveringSampleSize (
- final org.drip.spaces.instance.GeneralizedValidatedVector gvvi,
- final double dblEpsilon,
- final double dblDeviationUpperProbabilityBound,
- final boolean bSupremum)
- throws java.lang.Exception
- {
- if (null == gvvi || !org.drip.numerical.common.NumberUtil.IsValid (dblEpsilon) ||
- !org.drip.numerical.common.NumberUtil.IsValid (dblDeviationUpperProbabilityBound))
- throw new java.lang.Exception
- ("GeneralizedLearner::genericCoveringSampleSize => Invalid Inputs");
- org.drip.function.definition.R1ToR1 funcDeviationUpperProbabilityBound = new
- org.drip.function.definition.R1ToR1 (null) {
- @Override public double evaluate (
- final double dblSampleSize)
- throws java.lang.Exception
- {
- return genericCoveringProbabilityBound (gvvi, (int) dblSampleSize, dblEpsilon, bSupremum);
- }
- };
- org.drip.function.r1tor1solver.FixedPointFinderOutput fpfo = new
- org.drip.function.r1tor1solver.FixedPointFinderZheng (dblDeviationUpperProbabilityBound,
- funcDeviationUpperProbabilityBound, false).findRoot();
- if (null == fpfo || !fpfo.containsRoot())
- throw new java.lang.Exception
- ("GeneralizedLearner::genericCoveringSampleSize => Cannot Estimate Minimal Sample Size");
- return fpfo.getRoot();
- }
- /**
- * Compute the Upper Bound of the Probability of the Absolute Deviation between the Empirical and the
- * Population Means using the Function Class Supremum Covering Number for Regression Learning
- *
- * @param iSampleSize The Sample Size
- * @param dblEpsilon The Deviation of the Empirical Mean from the Population Mean
- * @param bSupremum TRUE To Use the Supremum Metric in place of the Built-in Metric
- *
- * @return The Upper Bound of the Probability of the Absolute Deviation between the Empirical and the
- * Population Means using the Function Class Supremum Covering Number for Regression Learning
- *
- * @throws java.lang.Exception Thrown if the Upper Probability Bound cannot be computed
- */
- public double regressorCoveringProbabilityBound (
- final int iSampleSize,
- final double dblEpsilon,
- final boolean bSupremum)
- throws java.lang.Exception
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (dblEpsilon) || 0. >= dblEpsilon || iSampleSize < (2. /
- (dblEpsilon * dblEpsilon)))
- throw new java.lang.Exception
- ("GeneralizedLearner::regressorCoveringProbabilityBound => Invalid Inputs");
- org.drip.function.definition.R1ToR1 funcSampleCoefficient = new
- org.drip.function.definition.R1ToR1 (null) {
- @Override public double evaluate (
- final double dblSampleSize)
- throws java.lang.Exception
- {
- return 12. * dblSampleSize;
- }
- };
- return (new org.drip.learning.bound.CoveringNumberLossBound (funcSampleCoefficient, 2.,
- 36.)).deviationProbabilityUpperBound (iSampleSize, dblEpsilon) * (bSupremum ?
- _funcClassRxToR1.populationSupremumCoveringNumber (dblEpsilon / 6.) :
- _funcClassRxToR1.populationCoveringNumber (dblEpsilon / 6.));
- }
- /**
- * Compute the Minimum Possible Sample Size needed to generate the required Upper Probability Bound for
- * the Specified Empirical Deviation using the Covering Number Convergence Bounds for Regression
- * Learning.
- *
- * @param dblEpsilon The Deviation of the Empirical Mean from the Population Mean
- * @param dblDeviationUpperProbabilityBound The Upper Bound of the Probability for the given Deviation
- * @param bSupremum TRUE To Use the Supremum Metric in place of the Built-in Metric
- *
- * @return The Minimum Possible Sample Size
- *
- * @throws java.lang.Exception Thrown if the Minimum Sample Size cannot be computed
- */
- public double regressorCoveringSampleSize (
- final double dblEpsilon,
- final double dblDeviationUpperProbabilityBound,
- final boolean bSupremum)
- throws java.lang.Exception
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (dblEpsilon) ||
- !org.drip.numerical.common.NumberUtil.IsValid (dblDeviationUpperProbabilityBound))
- throw new java.lang.Exception
- ("GeneralizedLearner::regressorCoveringSampleSize => Invalid Inputs");
- org.drip.function.definition.R1ToR1 funcDeviationUpperProbabilityBound = new
- org.drip.function.definition.R1ToR1 (null) {
- @Override public double evaluate (
- final double dblSampleSize)
- throws java.lang.Exception
- {
- return regressorCoveringProbabilityBound ((int) dblSampleSize, dblEpsilon, bSupremum);
- }
- };
- org.drip.function.r1tor1solver.FixedPointFinderOutput fpfo = new
- org.drip.function.r1tor1solver.FixedPointFinderZheng (dblDeviationUpperProbabilityBound,
- funcDeviationUpperProbabilityBound, false).findRoot();
- if (null == fpfo || !fpfo.containsRoot())
- throw new java.lang.Exception
- ("GeneralizedLearner::regressorCoveringSampleSize => Cannot Estimate Minimal Sample Size");
- return fpfo.getRoot();
- }
- /**
- * Compute the Sample/Data Dependent Upper Bound of the Probability of the Absolute Deviation between
- * the Empirical and the Population Means using the Function Class Supremum Covering Number for
- * Regression Learning
- *
- * @param gvvi The Validated Instance Vector Sequence
- * @param iSampleSize The Sample Size
- * @param dblEpsilon The Deviation of the Empirical Mean from the Population Mean
- * @param bSupremum TRUE To Use the Supremum Metric in place of the Built-in Metric
- *
- * @return The Sample/Data Dependent Upper Bound of the Probability of the Absolute Deviation between
- * the Empirical and the Population Means using the Function Class Supremum Covering Number for
- * Regression Learning
- *
- * @throws java.lang.Exception Thrown if the Upper Probability Bound cannot be computed
- */
- public double regressorCoveringProbabilityBound (
- final org.drip.spaces.instance.GeneralizedValidatedVector gvvi,
- final int iSampleSize,
- final double dblEpsilon,
- final boolean bSupremum)
- throws java.lang.Exception
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (dblEpsilon) || 0. >= dblEpsilon || iSampleSize < (2. /
- (dblEpsilon * dblEpsilon)))
- throw new java.lang.Exception
- ("GeneralizedLearner::regressorCoveringProbabilityBound => Invalid Inputs");
- org.drip.function.definition.R1ToR1 funcSampleCoefficient = new
- org.drip.function.definition.R1ToR1 (null) {
- @Override public double evaluate (
- final double dblSampleSize)
- throws java.lang.Exception
- {
- return 12. * dblSampleSize;
- }
- };
- return (new org.drip.learning.bound.CoveringNumberLossBound (funcSampleCoefficient, 2.,
- 36.)).deviationProbabilityUpperBound (iSampleSize, dblEpsilon) * lossSampleCoveringNumber (gvvi,
- dblEpsilon / 6., bSupremum);
- }
- /**
- * Compute the Minimum Possible Sample Size needed to generate the required Upper Probability Bound for
- * the Specified Empirical Deviation using the Covering Number Convergence Bounds for Regression
- * Learning.
- *
- * @param gvvi The Validated Instance Vector Sequence
- * @param dblEpsilon The Deviation of the Empirical Mean from the Population Mean
- * @param dblDeviationUpperProbabilityBound The Upper Bound of the Probability for the given Deviation
- * @param bSupremum TRUE To Use the Supremum Metric in place of the Built-in Metric
- *
- * @return The Minimum Possible Sample Size
- *
- * @throws java.lang.Exception Thrown if the Minimum Sample Size cannot be computed
- */
- public double regressorCoveringSampleSize (
- final org.drip.spaces.instance.GeneralizedValidatedVector gvvi,
- final double dblEpsilon,
- final double dblDeviationUpperProbabilityBound,
- final boolean bSupremum)
- throws java.lang.Exception
- {
- if (null == gvvi || !org.drip.numerical.common.NumberUtil.IsValid (dblEpsilon) ||
- !org.drip.numerical.common.NumberUtil.IsValid (dblDeviationUpperProbabilityBound))
- throw new java.lang.Exception
- ("GeneralizedLearner::regressorCoveringSampleSize => Invalid Inputs");
- org.drip.function.definition.R1ToR1 funcDeviationUpperProbabilityBound = new
- org.drip.function.definition.R1ToR1 (null) {
- @Override public double evaluate (
- final double dblSampleSize)
- throws java.lang.Exception
- {
- return regressorCoveringProbabilityBound (gvvi, (int) dblSampleSize, dblEpsilon, bSupremum);
- }
- };
- org.drip.function.r1tor1solver.FixedPointFinderOutput fpfo = new
- org.drip.function.r1tor1solver.FixedPointFinderZheng (dblDeviationUpperProbabilityBound,
- funcDeviationUpperProbabilityBound, false).findRoot();
- if (null == fpfo || !fpfo.containsRoot())
- throw new java.lang.Exception
- ("GeneralizedLearner::regressorCoveringSampleSize => Cannot Estimate Minimal Sample Size");
- return fpfo.getRoot();
- }
- }