DecisionFunctionOperatorBounds.java
- package org.drip.learning.svm;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2020 Lakshmi Krishnamurthy
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- * Copyright (C) 2018 Lakshmi Krishnamurthy
- * Copyright (C) 2017 Lakshmi Krishnamurthy
- * Copyright (C) 2016 Lakshmi Krishnamurthy
- * Copyright (C) 2015 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
- * asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
- * analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
- * equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
- * numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
- * and computational support.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three modules:
- *
- * - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
- *
- * DROP Product Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Loan Analytics
- * - Transaction Cost Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Asset Liability Management Analytics
- * - Capital Estimation Analytics
- * - Exposure Analytics
- * - Margin Analytics
- * - XVA Analytics
- *
- * DROP Computational Core implements libraries for the following:
- * - Algorithm Support
- * - Computation Support
- * - Function Analysis
- * - Model Validation
- * - Numerical Analysis
- * - Numerical Optimizer
- * - Spline Builder
- * - Statistical Learning
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>DecisionFunctionOperatorBounds</i> implements the Dot Product Entropy Number Upper Bounds for the
- * Product of Kernel Feature Map Function and the Scaling Diagonal Operator.
- *
- * <br><br>
- * The References are:
- * <br><br>
- * <ul>
- * <li>
- * Ash, R. (1965): <i>Information Theory</i> <b>Inter-science</b> New York
- * </li>
- * <li>
- * Carl, B., and I. Stephani (1990): <i>Entropy, Compactness, and Approximation of Operators</i>
- * <b>Cambridge University Press</b> Cambridge UK
- * </li>
- * <li>
- * Gordon, Y., H. Konig, and C. Schutt (1987): Geometric and Probabilistic Estimates of Entropy and
- * Approximation Numbers of Operators <i>Journal of Approximation Theory</i> <b>49</b> 219-237
- * </li>
- * <li>
- * Konig, H. (1986): <i>Eigenvalue Distribution of Compact Operators</i> <b>Birkhauser</b> Basel,
- * Switzerland
- * </li>
- * <li>
- * Smola, A. J., A. Elisseff, B. Scholkopf, and R. C. Williamson (2000): Entropy Numbers for Convex
- * Combinations and mlps, in: <i>Advances in Large Margin Classifiers, A. Smola, P. Bartlett, B.
- * Scholkopf, and D. Schuurmans - editors</i> <b>MIT Press</b> Cambridge, MA
- * </li>
- * </ul>
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/StatisticalLearningLibrary.md">Statistical Learning</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/learning">Agnostic Learning Bounds under Empirical Loss Minimization Schemes</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/learning/svm">Kernel SVM Decision Function Operator</a></li>
- * </ul>
- *
- * @author Lakshmi Krishnamurthy
- */
- public class DecisionFunctionOperatorBounds {
- private int _iFeatureSpaceDimension = -1;
- private double _dblInverseMarginNormBound = java.lang.Double.NaN;
- private double _dblFeatureSpaceMaureyConstant = java.lang.Double.NaN;
- private org.drip.learning.kernel.DiagonalScalingOperator _dsoFactorizer = null;
- /**
- * DecisionFunctionOperatorBounds Constructor
- *
- * @param dsoFactorizer The Factorizing Diagonal Scaling Operator
- * @param dblInverseMarginNormBound The Decision Function Inverse Margin Norm Bound
- * @param dblFeatureSpaceMaureyConstant The Kernel Feature Space Function Maurey Constant
- * @param iFeatureSpaceDimension The Kernel Feature Space Dimension
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public DecisionFunctionOperatorBounds (
- final org.drip.learning.kernel.DiagonalScalingOperator dsoFactorizer,
- final double dblInverseMarginNormBound,
- final double dblFeatureSpaceMaureyConstant,
- final int iFeatureSpaceDimension)
- throws java.lang.Exception
- {
- if (null == (_dsoFactorizer = dsoFactorizer) || !org.drip.numerical.common.NumberUtil.IsValid
- (_dblInverseMarginNormBound = dblInverseMarginNormBound) ||
- !org.drip.numerical.common.NumberUtil.IsValid (_dblFeatureSpaceMaureyConstant =
- dblFeatureSpaceMaureyConstant) || 0 >= (_iFeatureSpaceDimension =
- iFeatureSpaceDimension))
- throw new java.lang.Exception ("DecisionFunctionOperatorBounds ctr => Invalid Inputs");
- }
- /**
- * Retrieve the Factorizing Diagonal Scaling Operator Instance
- *
- * @return The Factorizing Diagonal Scaling Operator Instance
- */
- public org.drip.learning.kernel.DiagonalScalingOperator factorizingOperator()
- {
- return _dsoFactorizer;
- }
- /**
- * Retrieve the Norm Upper Bound of the Inverse Margin
- *
- * @return The Norm Upper Bound of the Inverse Margin
- */
- public double inverseMarginNormBound()
- {
- return _dblInverseMarginNormBound;
- }
- /**
- * Retrieve the Feature Space Maurey Constant
- *
- * @return The Feature Space Maurey Constant
- */
- public double featureSpaceMaureyConstant()
- {
- return _dblFeatureSpaceMaureyConstant;
- }
- /**
- * Retrieve the Feature Space Dimension
- *
- * @return The Feature Space Dimension
- */
- public double featureSpaceDimension()
- {
- return _iFeatureSpaceDimension;
- }
- /**
- * Compute the Feature Space's Maurey Bound for the Entropy Number given the specified Entropy Number
- *
- * @param iFeatureSpaceEntropyNumber The Feature Space Entropy Number
- *
- * @return The Feature Space's Maurey Bound for the specified Entropy Number
- *
- * @throws java.lang.Exception The Feature Space's Maurey Bound cannot be computed
- */
- public double featureSpaceMaureyBound (
- final int iFeatureSpaceEntropyNumber)
- throws java.lang.Exception
- {
- if (0 >= iFeatureSpaceEntropyNumber)
- throw new java.lang.Exception
- ("DecisionFunctionOperatorBounds::featureSpaceMaureyBound => Invalid Inputs");
- return java.lang.Math.sqrt (1. / (iFeatureSpaceEntropyNumber * java.lang.Math.sqrt
- (java.lang.Math.log (1. + (((double) _iFeatureSpaceDimension) / java.lang.Math.log
- (iFeatureSpaceEntropyNumber))))));
- }
- /**
- * Compute the Decision Function Entropy Number Upper Bound using the Product of the Feature Space's
- * Maurey Upper Bound for the Entropy for the specified Entropy Number and the Scaling Operator Entropy
- * Number Upper Bound
- *
- * @param iFeatureSpaceEntropyNumber The Feature Space Entropy Number
- *
- * @return The Feature Space's Operator Entropy for the specified Entropy Number
- *
- * @throws java.lang.Exception The Feature Space's Operator Entropy cannot be computed
- */
- public double featureMaureyOperatorEntropy (
- final int iFeatureSpaceEntropyNumber)
- throws java.lang.Exception
- {
- return _dblInverseMarginNormBound * _dsoFactorizer.entropyNumberUpperBound() *
- featureSpaceMaureyBound (iFeatureSpaceEntropyNumber);
- }
- /**
- * Compute the Decision Function Entropy Number Upper Bound using the Product of the Feature Space's
- * Maurey Upper Bound for the Entropy for the specified Entropy Number and the Scaling Operator Norm
- *
- * @param iFeatureSpaceEntropyNumber The Feature Space Entropy Number
- *
- * @return The Feature Space's Operator Norm for the specified Entropy Number
- *
- * @throws java.lang.Exception The Feature Space's Operator Norm cannot be computed
- */
- public double featureMaureyOperatorNorm (
- final int iFeatureSpaceEntropyNumber)
- throws java.lang.Exception
- {
- return _dblInverseMarginNormBound * _dsoFactorizer.norm() * featureSpaceMaureyBound
- (iFeatureSpaceEntropyNumber);
- }
- /**
- * Compute the Decision Function Entropy Number Upper Bound using the Product of the Feature Space's
- * Norm for the Upper Bound of the Entropy Number and the Scaling Operator Norm
- *
- * @return The Entropy Number Upper Bound using the Product Norm
- *
- * @throws java.lang.Exception The Entropy Number Upper Bound cannot be computed
- */
- public double productFeatureOperatorNorm()
- throws java.lang.Exception
- {
- return _dblInverseMarginNormBound * _dsoFactorizer.norm();
- }
- /**
- * Compute the Decision Function Entropy Number Upper Bound using the Product of the Feature Space's
- * Norm for the Upper Bound of the Entropy Number and the Scaling Operator Entropy Number Upper Bound
- *
- * @return The Entropy Number Upper Bound using the Product Norm
- *
- * @throws java.lang.Exception The Entropy Number Upper Bound cannot be computed
- */
- public double featureNormOperatorEntropy()
- throws java.lang.Exception
- {
- return _dblInverseMarginNormBound * _dsoFactorizer.entropyNumberUpperBound();
- }
- /**
- * Compute the Infimum of the Decision Function Operator Upper Bound across all the Product Bounds for
- * the specified Feature Space Entropy Number
- *
- * @param iFeatureSpaceEntropyNumber The specified Feature Space Entropy Number
- *
- * @return Infimum of the Decision Function Operator Upper Bound
- *
- * @throws java.lang.Exception Thrown if the Infimum of the Decision Function Operator Upper Bound cannot
- * be calculated
- */
- public double infimumUpperBound (
- final int iFeatureSpaceEntropyNumber)
- throws java.lang.Exception
- {
- double dblFactorizerNorm = _dsoFactorizer.norm();
- double dblFactorizerEntropyUpperBound = _dsoFactorizer.entropyNumberUpperBound();
- double dblFeatureSpaceMaureyBound = featureSpaceMaureyBound (iFeatureSpaceEntropyNumber);
- double dblProductFeatureOperatorNorm = _dblInverseMarginNormBound * dblFactorizerNorm;
- double dblFeatureMaureyOperatorNorm = dblProductFeatureOperatorNorm * dblFeatureSpaceMaureyBound;
- double dblFeatureNormOperatorEntropy = _dblInverseMarginNormBound * dblFactorizerEntropyUpperBound;
- double dblInfimumUpperBound = dblFeatureNormOperatorEntropy * dblFeatureSpaceMaureyBound;
- if (dblInfimumUpperBound > dblFeatureMaureyOperatorNorm)
- dblInfimumUpperBound = dblFeatureMaureyOperatorNorm;
- if (dblInfimumUpperBound > dblProductFeatureOperatorNorm)
- dblInfimumUpperBound = dblProductFeatureOperatorNorm;
- return dblInfimumUpperBound > dblFeatureNormOperatorEntropy ? dblInfimumUpperBound :
- dblFeatureNormOperatorEntropy;
- }
- }