KernelRdDecisionFunction.java
- package org.drip.learning.svm;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2020 Lakshmi Krishnamurthy
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- * Copyright (C) 2018 Lakshmi Krishnamurthy
- * Copyright (C) 2017 Lakshmi Krishnamurthy
- * Copyright (C) 2016 Lakshmi Krishnamurthy
- * Copyright (C) 2015 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
- * asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
- * analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
- * equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
- * numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
- * and computational support.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three modules:
- *
- * - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
- *
- * DROP Product Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Loan Analytics
- * - Transaction Cost Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Asset Liability Management Analytics
- * - Capital Estimation Analytics
- * - Exposure Analytics
- * - Margin Analytics
- * - XVA Analytics
- *
- * DROP Computational Core implements libraries for the following:
- * - Algorithm Support
- * - Computation Support
- * - Function Analysis
- * - Model Validation
- * - Numerical Analysis
- * - Numerical Optimizer
- * - Spline Builder
- * - Statistical Learning
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>KernelRdDecisionFunction</i> implements the Kernel-based R<sup>d</sup> Decision Function-Based SVM
- * Functionality for Classification and Regression.
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/StatisticalLearningLibrary.md">Statistical Learning</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/learning">Agnostic Learning Bounds under Empirical Loss Minimization Schemes</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/learning/svm">Kernel SVM Decision Function Operator</a></li>
- * </ul>
- *
- * @author Lakshmi Krishnamurthy
- */
- public abstract class KernelRdDecisionFunction extends org.drip.learning.svm.RdDecisionFunction {
- private double[][] _aadblKernelPredictorPivot = null;
- private org.drip.learning.kernel.SymmetricRdToNormedRdKernel _kernel = null;
- /**
- * KernelRdDecisionFunction Constructor
- *
- * @param rdInverseMargin The Inverse Margin Weights R^d Space
- * @param adblInverseMarginWeight Array of Inverse Margin Weights
- * @param dblB The Kernel Offset
- * @param kernel The Kernel
- * @param aadblKernelPredictorPivot Array of the Kernel R^d Predictor Pivot Nodes
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public KernelRdDecisionFunction (
- final org.drip.spaces.metric.RdNormed rdInverseMargin,
- final double[] adblInverseMarginWeight,
- final double dblB,
- final org.drip.learning.kernel.SymmetricRdToNormedRdKernel kernel,
- final double[][] aadblKernelPredictorPivot)
- throws java.lang.Exception
- {
- super (kernel.inputMetricVectorSpace(), rdInverseMargin, adblInverseMarginWeight, dblB);
- if (null == (_kernel = kernel) || null == (_aadblKernelPredictorPivot = aadblKernelPredictorPivot))
- throw new java.lang.Exception ("KernelRdDecisionFunction ctr: Invalid Inputs");
- int iKernelInputDimension = _kernel.inputMetricVectorSpace().dimension();
- int iNumPredictorPivot = adblInverseMarginWeight.length;
- if (0 == iNumPredictorPivot || iNumPredictorPivot != _aadblKernelPredictorPivot.length)
- throw new java.lang.Exception ("KernelRdDecisionFunction ctr: Invalid Inputs");
- for (int i = 0; i < iNumPredictorPivot; ++i) {
- if (null == _aadblKernelPredictorPivot[i] || _aadblKernelPredictorPivot[i].length !=
- iKernelInputDimension)
- throw new java.lang.Exception ("KernelRdDecisionFunction ctr: Invalid Inputs");
- }
- }
- @Override public double evaluate (
- final double[] adblX)
- throws java.lang.Exception
- {
- if (null == adblX || adblX.length != _kernel.inputMetricVectorSpace().dimension())
- throw new java.lang.Exception ("KernelRdDecisionFunction::evaluate => Invalid Inputs");
- double[] adblInverseMarginWeight = inverseMarginWeights();
- double dblDotProduct = 0.;
- int iNumPredictorPivot = adblInverseMarginWeight.length;
- for (int i = 0; i < iNumPredictorPivot; ++i)
- dblDotProduct += adblInverseMarginWeight[i] * _kernel.evaluate (_aadblKernelPredictorPivot[i],
- adblX);
- return dblDotProduct + offset();
- }
- /**
- * Retrieve the Decision Kernel
- *
- * @return The Decision Kernel
- */
- public org.drip.learning.kernel.SymmetricRdToNormedRdKernel kernel()
- {
- return _kernel;
- }
- /**
- * Retrieve the Decision Kernel Predictor Pivot Nodes
- *
- * @return The Decision Kernel Predictor Pivot Nodes
- */
- public double[][] kernelPredictorPivot()
- {
- return _aadblKernelPredictorPivot;
- }
- }