ProjectionDistributionLoading.java

  1. package org.drip.measure.bayesian;

  2. /*
  3.  * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
  4.  */

  5. /*!
  6.  * Copyright (C) 2020 Lakshmi Krishnamurthy
  7.  * Copyright (C) 2019 Lakshmi Krishnamurthy
  8.  * Copyright (C) 2018 Lakshmi Krishnamurthy
  9.  * Copyright (C) 2017 Lakshmi Krishnamurthy
  10.  * Copyright (C) 2016 Lakshmi Krishnamurthy
  11.  *
  12.  *  This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
  13.  *      asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
  14.  *      analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
  15.  *      equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
  16.  *      numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
  17.  *      and computational support.
  18.  *  
  19.  *      https://lakshmidrip.github.io/DROP/
  20.  *  
  21.  *  DROP is composed of three modules:
  22.  *  
  23.  *  - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
  24.  *  - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
  25.  *  - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
  26.  *
  27.  *  DROP Product Core implements libraries for the following:
  28.  *  - Fixed Income Analytics
  29.  *  - Loan Analytics
  30.  *  - Transaction Cost Analytics
  31.  *
  32.  *  DROP Portfolio Core implements libraries for the following:
  33.  *  - Asset Allocation Analytics
  34.  *  - Asset Liability Management Analytics
  35.  *  - Capital Estimation Analytics
  36.  *  - Exposure Analytics
  37.  *  - Margin Analytics
  38.  *  - XVA Analytics
  39.  *
  40.  *  DROP Computational Core implements libraries for the following:
  41.  *  - Algorithm Support
  42.  *  - Computation Support
  43.  *  - Function Analysis
  44.  *  - Model Validation
  45.  *  - Numerical Analysis
  46.  *  - Numerical Optimizer
  47.  *  - Spline Builder
  48.  *  - Statistical Learning
  49.  *
  50.  *  Documentation for DROP is Spread Over:
  51.  *
  52.  *  - Main                     => https://lakshmidrip.github.io/DROP/
  53.  *  - Wiki                     => https://github.com/lakshmiDRIP/DROP/wiki
  54.  *  - GitHub                   => https://github.com/lakshmiDRIP/DROP
  55.  *  - Repo Layout Taxonomy     => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
  56.  *  - Javadoc                  => https://lakshmidrip.github.io/DROP/Javadoc/index.html
  57.  *  - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
  58.  *  - Release Versions         => https://lakshmidrip.github.io/DROP/version.html
  59.  *  - Community Credits        => https://lakshmidrip.github.io/DROP/credits.html
  60.  *  - Issues Catalog           => https://github.com/lakshmiDRIP/DROP/issues
  61.  *  - JUnit                    => https://lakshmidrip.github.io/DROP/junit/index.html
  62.  *  - Jacoco                   => https://lakshmidrip.github.io/DROP/jacoco/index.html
  63.  *
  64.  *  Licensed under the Apache License, Version 2.0 (the "License");
  65.  *      you may not use this file except in compliance with the License.
  66.  *  
  67.  *  You may obtain a copy of the License at
  68.  *      http://www.apache.org/licenses/LICENSE-2.0
  69.  *  
  70.  *  Unless required by applicable law or agreed to in writing, software
  71.  *      distributed under the License is distributed on an "AS IS" BASIS,
  72.  *      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  73.  *  
  74.  *  See the License for the specific language governing permissions and
  75.  *      limitations under the License.
  76.  */

  77. /**
  78.  * <i>ProjectionDistributionLoading</i> contains the Projection Distribution and its Loadings to the Scoping
  79.  * Distribution.
  80.  *
  81.  *  <br><br>
  82.  *  <ul>
  83.  *      <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
  84.  *      <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalAnalysisLibrary.md">Numerical Analysis Library</a></li>
  85.  *      <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/README.md">R<sup>d</sup> Continuous/Discrete Probability Measures</a></li>
  86.  *      <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/bayesian/README.md">Prior, Conditional, Posterior Theil Bayesian</a></li>
  87.  *  </ul>
  88.  *
  89.  * @author Lakshmi Krishnamurthy
  90.  */

  91. public class ProjectionDistributionLoading {
  92.     private double[][] _aadblScopingLoading = null;
  93.     private org.drip.measure.continuous.R1Multivariate _r1mDistribution = null;

  94.     /**
  95.      * Generate the Projection Co-variance Matrix from the Confidence Level
  96.      *
  97.      * @param aadblScopingCovariance The Scoping Co-variance Matrix
  98.      * @param aadblScopingLoading The Projection-Scoping Variate Loadings
  99.      * @param dblTau The Tau Parameter
  100.      *
  101.      * @return The Projection Co-variance Matrix
  102.      */

  103.     public static final double[][] ProjectionCovariance (
  104.         final double[][] aadblScopingCovariance,
  105.         final double[][] aadblScopingLoading,
  106.         final double dblTau)
  107.     {
  108.         if (null == aadblScopingCovariance || null == aadblScopingLoading ||
  109.             !org.drip.numerical.common.NumberUtil.IsValid (dblTau))
  110.             return null;

  111.         int iNumProjection = aadblScopingLoading.length;
  112.         double[][] aadblProjectionCovariance = 0 == iNumProjection ? null : new
  113.             double[iNumProjection][iNumProjection];

  114.         if (0 == iNumProjection || iNumProjection != aadblScopingLoading.length) return null;

  115.         for (int i = 0; i < iNumProjection; ++i) {
  116.             for (int j = 0; j < iNumProjection; ++j) {
  117.                 try {
  118.                     aadblProjectionCovariance[i][j] = i != j ? 0. : dblTau *
  119.                         org.drip.numerical.linearalgebra.Matrix.DotProduct (aadblScopingLoading[i],
  120.                             org.drip.numerical.linearalgebra.Matrix.Product (aadblScopingCovariance,
  121.                                 aadblScopingLoading[j]));
  122.                 } catch (java.lang.Exception e) {
  123.                     e.printStackTrace();

  124.                     return null;
  125.                 }
  126.             }
  127.         }

  128.         return aadblProjectionCovariance;
  129.     }

  130.     /**
  131.      * Generate the ProjectionDistributionLoading Instance from the Confidence Level
  132.      *
  133.      * @param meta The R^1 Multivariate Meta Headers
  134.      * @param adblMean Array of the Univariate Means
  135.      * @param aadblScopingCovariance The Scoping Co-variance Matrix
  136.      * @param aadblScopingLoading The Projection-Scoping Variate Loadings
  137.      * @param dblTau The Tau Parameter
  138.      *
  139.      * @return The ProjectionDistributionLoading Instance
  140.      */

  141.     public static final ProjectionDistributionLoading FromConfidence (
  142.         final org.drip.measure.continuous.MultivariateMeta meta,
  143.         final double[] adblMean,
  144.         final double[][] aadblScopingCovariance,
  145.         final double[][] aadblScopingLoading,
  146.         final double dblTau)
  147.     {
  148.         try {
  149.             return new ProjectionDistributionLoading (new org.drip.measure.gaussian.R1MultivariateNormal
  150.                 (meta, adblMean, new org.drip.measure.gaussian.Covariance (ProjectionCovariance
  151.                     (aadblScopingCovariance, aadblScopingLoading, dblTau))), aadblScopingLoading);
  152.         } catch (java.lang.Exception e) {
  153.             e.printStackTrace();
  154.         }

  155.         return null;
  156.     }

  157.     /**
  158.      * ProjectionDistributionLoading Constructor
  159.      *
  160.      * @param r1mDistribution The Projection Distribution Instance
  161.      * @param aadblScopingLoading The Projection-Scoping Variate Loadings
  162.      *
  163.      * @throws java.lang.Exception Thrown if the Inputs are Invalid
  164.      */

  165.     public ProjectionDistributionLoading (
  166.         final org.drip.measure.continuous.R1Multivariate r1mDistribution,
  167.         final double[][] aadblScopingLoading)
  168.         throws java.lang.Exception
  169.     {
  170.         if (null == (_r1mDistribution = r1mDistribution) || null == (_aadblScopingLoading =
  171.             aadblScopingLoading))
  172.             throw new java.lang.Exception ("ProjectionDistributionLoading Constructor => Invalid Inputs!");

  173.         int iNumProjectionView = _r1mDistribution.meta().numVariable();

  174.         if (iNumProjectionView != _aadblScopingLoading.length)
  175.             throw new java.lang.Exception ("ProjectionDistributionLoading Constructor => Invalid Inputs!");

  176.         for (int i = 0; i < iNumProjectionView; ++i) {
  177.             if (null == _aadblScopingLoading[i] || 0 == _aadblScopingLoading[i].length ||
  178.                 !org.drip.numerical.common.NumberUtil.IsValid (_aadblScopingLoading[i]))
  179.                 throw new java.lang.Exception
  180.                     ("ProjectionDistributionLoading Constructor => Invalid Inputs!");
  181.         }
  182.     }

  183.     /**
  184.      * Retrieve the Projection Distribution
  185.      *
  186.      * @return The Projection Distribution
  187.      */

  188.     public org.drip.measure.continuous.R1Multivariate distribution()
  189.     {
  190.         return _r1mDistribution;
  191.     }

  192.     /**
  193.      * Retrieve the Matrix of the Scoping Loadings
  194.      *
  195.      * @return The Matrix of the Scoping Loadings
  196.      */

  197.     public double[][] scopingLoading()
  198.     {
  199.         return _aadblScopingLoading;
  200.     }

  201.     /**
  202.      * Retrieve the Number of the Projection Variates
  203.      *
  204.      * @return The Number of the Projection Variates
  205.      */

  206.     public int numberOfProjectionVariate()
  207.     {
  208.         return _aadblScopingLoading.length;
  209.     }

  210.     /**
  211.      * Retrieve the Number of the Scoping Variate
  212.      *
  213.      * @return The Number of the Scoping Variate
  214.      */

  215.     public int numberOfScopingVariate()
  216.     {
  217.         return _aadblScopingLoading[0].length;
  218.     }
  219. }