R1MultivariateNormalConvolutionEngine.java

  1. package org.drip.measure.bayesian;

  2. /*
  3.  * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
  4.  */

  5. /*!
  6.  * Copyright (C) 2020 Lakshmi Krishnamurthy
  7.  * Copyright (C) 2019 Lakshmi Krishnamurthy
  8.  * Copyright (C) 2018 Lakshmi Krishnamurthy
  9.  * Copyright (C) 2017 Lakshmi Krishnamurthy
  10.  * Copyright (C) 2016 Lakshmi Krishnamurthy
  11.  *
  12.  *  This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
  13.  *      asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
  14.  *      analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
  15.  *      equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
  16.  *      numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
  17.  *      and computational support.
  18.  *  
  19.  *      https://lakshmidrip.github.io/DROP/
  20.  *  
  21.  *  DROP is composed of three modules:
  22.  *  
  23.  *  - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
  24.  *  - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
  25.  *  - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
  26.  *
  27.  *  DROP Product Core implements libraries for the following:
  28.  *  - Fixed Income Analytics
  29.  *  - Loan Analytics
  30.  *  - Transaction Cost Analytics
  31.  *
  32.  *  DROP Portfolio Core implements libraries for the following:
  33.  *  - Asset Allocation Analytics
  34.  *  - Asset Liability Management Analytics
  35.  *  - Capital Estimation Analytics
  36.  *  - Exposure Analytics
  37.  *  - Margin Analytics
  38.  *  - XVA Analytics
  39.  *
  40.  *  DROP Computational Core implements libraries for the following:
  41.  *  - Algorithm Support
  42.  *  - Computation Support
  43.  *  - Function Analysis
  44.  *  - Model Validation
  45.  *  - Numerical Analysis
  46.  *  - Numerical Optimizer
  47.  *  - Spline Builder
  48.  *  - Statistical Learning
  49.  *
  50.  *  Documentation for DROP is Spread Over:
  51.  *
  52.  *  - Main                     => https://lakshmidrip.github.io/DROP/
  53.  *  - Wiki                     => https://github.com/lakshmiDRIP/DROP/wiki
  54.  *  - GitHub                   => https://github.com/lakshmiDRIP/DROP
  55.  *  - Repo Layout Taxonomy     => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
  56.  *  - Javadoc                  => https://lakshmidrip.github.io/DROP/Javadoc/index.html
  57.  *  - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
  58.  *  - Release Versions         => https://lakshmidrip.github.io/DROP/version.html
  59.  *  - Community Credits        => https://lakshmidrip.github.io/DROP/credits.html
  60.  *  - Issues Catalog           => https://github.com/lakshmiDRIP/DROP/issues
  61.  *  - JUnit                    => https://lakshmidrip.github.io/DROP/junit/index.html
  62.  *  - Jacoco                   => https://lakshmidrip.github.io/DROP/jacoco/index.html
  63.  *
  64.  *  Licensed under the Apache License, Version 2.0 (the "License");
  65.  *      you may not use this file except in compliance with the License.
  66.  *  
  67.  *  You may obtain a copy of the License at
  68.  *      http://www.apache.org/licenses/LICENSE-2.0
  69.  *  
  70.  *  Unless required by applicable law or agreed to in writing, software
  71.  *      distributed under the License is distributed on an "AS IS" BASIS,
  72.  *      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  73.  *  
  74.  *  See the License for the specific language governing permissions and
  75.  *      limitations under the License.
  76.  */

  77. /**
  78.  * <i>R1NormalConvolutionEngine</i> implements the Engine that generates the Joint/Posterior Distribution
  79.  *  from the Prior and the Conditional Joint R<sup>1</sup> Multivariate Normal Distributions.
  80.  *
  81.  *  <br><br>
  82.  *  <ul>
  83.  *      <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
  84.  *      <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalAnalysisLibrary.md">Numerical Analysis Library</a></li>
  85.  *      <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/README.md">R<sup>d</sup> Continuous/Discrete Probability Measures</a></li>
  86.  *      <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/bayesian/README.md">Prior, Conditional, Posterior Theil Bayesian</a></li>
  87.  *  </ul>
  88.  *
  89.  * @author Lakshmi Krishnamurthy
  90.  */

  91. public class R1MultivariateNormalConvolutionEngine implements org.drip.measure.bayesian.R1MultivariateConvolutionEngine {

  92.     /**
  93.      * Empty R1MultivariateNormalConvolutionEngine Construction
  94.      */

  95.     public R1MultivariateNormalConvolutionEngine()
  96.     {
  97.     }

  98.     @Override public org.drip.measure.bayesian.R1MultivariateConvolutionMetrics process (
  99.         final org.drip.measure.continuous.R1Multivariate r1mPrior,
  100.         final org.drip.measure.continuous.R1Multivariate r1mUnconditional,
  101.         final org.drip.measure.continuous.R1Multivariate r1mConditional)
  102.     {
  103.         if (null == r1mPrior || !(r1mPrior instanceof org.drip.measure.gaussian.R1MultivariateNormal) || null
  104.             == r1mConditional || !(r1mConditional instanceof org.drip.measure.gaussian.R1MultivariateNormal)
  105.                 || null == r1mUnconditional || !(r1mUnconditional instanceof
  106.                     org.drip.measure.gaussian.R1MultivariateNormal))
  107.             return null;

  108.         org.drip.measure.gaussian.R1MultivariateNormal r1mnPrior =
  109.             (org.drip.measure.gaussian.R1MultivariateNormal) r1mPrior;
  110.         org.drip.measure.gaussian.R1MultivariateNormal r1mnConditional =
  111.             (org.drip.measure.gaussian.R1MultivariateNormal) r1mConditional;
  112.         org.drip.measure.gaussian.R1MultivariateNormal r1mnUnconditional =
  113.             (org.drip.measure.gaussian.R1MultivariateNormal) r1mUnconditional;

  114.         double[][] aadblPriorPrecision = r1mnPrior.covariance().precisionMatrix();

  115.         double[][] aadblConditionalPrecision = r1mnConditional.covariance().precisionMatrix();

  116.         int iNumVariate = aadblConditionalPrecision.length;
  117.         double[] adblJointMean = new double[iNumVariate];
  118.         double[][] aadblJointPrecision = new double[iNumVariate][iNumVariate];
  119.         double[][] aadblPosteriorCovariance = new double[iNumVariate][iNumVariate];

  120.         if (aadblPriorPrecision.length != iNumVariate) return null;

  121.         double[] adblPrecisionWeightedPriorMean = org.drip.numerical.linearalgebra.Matrix.Product
  122.             (aadblPriorPrecision, r1mnPrior.mean());

  123.         if (null == adblPrecisionWeightedPriorMean) return null;

  124.         double[] adblPrecisionWeightedConditionalMean = org.drip.numerical.linearalgebra.Matrix.Product
  125.             (aadblConditionalPrecision, r1mnConditional.mean());

  126.         if (null == adblPrecisionWeightedConditionalMean) return null;

  127.         for (int i = 0; i < iNumVariate; ++i) {
  128.             adblJointMean[i] = adblPrecisionWeightedPriorMean[i] + adblPrecisionWeightedConditionalMean[i];

  129.             for (int j = 0; j < iNumVariate; ++j)
  130.                 aadblJointPrecision[i][j] = aadblPriorPrecision[i][j] + aadblConditionalPrecision[i][j];
  131.         }

  132.         double[][] aadblJointCovariance = org.drip.numerical.linearalgebra.Matrix.InvertUsingGaussianElimination
  133.             (aadblJointPrecision);

  134.         double[] adblJointPosteriorMean = org.drip.numerical.linearalgebra.Matrix.Product (aadblJointCovariance,
  135.             adblJointMean);

  136.         double[][] aadblUnconditionalCovariance = r1mnUnconditional.covariance().covarianceMatrix();

  137.         org.drip.measure.continuous.MultivariateMeta meta = r1mnPrior.meta();

  138.         for (int i = 0; i < iNumVariate; ++i) {
  139.             for (int j = 0; j < iNumVariate; ++j)
  140.                 aadblPosteriorCovariance[i][j] = aadblJointCovariance[i][j] +
  141.                     aadblUnconditionalCovariance[i][j];
  142.         }

  143.         try {
  144.             return new org.drip.measure.bayesian.R1MultivariateConvolutionMetrics (r1mPrior, r1mUnconditional,
  145.                 r1mConditional, new org.drip.measure.gaussian.R1MultivariateNormal (meta,
  146.                     adblJointPosteriorMean, new org.drip.measure.gaussian.Covariance (aadblJointCovariance)),
  147.                         new org.drip.measure.gaussian.R1MultivariateNormal (meta, adblJointPosteriorMean, new
  148.                             org.drip.measure.gaussian.Covariance (aadblPosteriorCovariance)));
  149.         } catch (java.lang.Exception e) {
  150.             e.printStackTrace();
  151.         }

  152.         return null;
  153.     }
  154. }