R1MultivariateNormalConvolutionEngine.java
- package org.drip.measure.bayesian;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2020 Lakshmi Krishnamurthy
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- * Copyright (C) 2018 Lakshmi Krishnamurthy
- * Copyright (C) 2017 Lakshmi Krishnamurthy
- * Copyright (C) 2016 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
- * asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
- * analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
- * equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
- * numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
- * and computational support.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three modules:
- *
- * - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
- *
- * DROP Product Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Loan Analytics
- * - Transaction Cost Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Asset Liability Management Analytics
- * - Capital Estimation Analytics
- * - Exposure Analytics
- * - Margin Analytics
- * - XVA Analytics
- *
- * DROP Computational Core implements libraries for the following:
- * - Algorithm Support
- * - Computation Support
- * - Function Analysis
- * - Model Validation
- * - Numerical Analysis
- * - Numerical Optimizer
- * - Spline Builder
- * - Statistical Learning
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>R1NormalConvolutionEngine</i> implements the Engine that generates the Joint/Posterior Distribution
- * from the Prior and the Conditional Joint R<sup>1</sup> Multivariate Normal Distributions.
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalAnalysisLibrary.md">Numerical Analysis Library</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/README.md">R<sup>d</sup> Continuous/Discrete Probability Measures</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/bayesian/README.md">Prior, Conditional, Posterior Theil Bayesian</a></li>
- * </ul>
- *
- * @author Lakshmi Krishnamurthy
- */
- public class R1MultivariateNormalConvolutionEngine implements org.drip.measure.bayesian.R1MultivariateConvolutionEngine {
- /**
- * Empty R1MultivariateNormalConvolutionEngine Construction
- */
- public R1MultivariateNormalConvolutionEngine()
- {
- }
- @Override public org.drip.measure.bayesian.R1MultivariateConvolutionMetrics process (
- final org.drip.measure.continuous.R1Multivariate r1mPrior,
- final org.drip.measure.continuous.R1Multivariate r1mUnconditional,
- final org.drip.measure.continuous.R1Multivariate r1mConditional)
- {
- if (null == r1mPrior || !(r1mPrior instanceof org.drip.measure.gaussian.R1MultivariateNormal) || null
- == r1mConditional || !(r1mConditional instanceof org.drip.measure.gaussian.R1MultivariateNormal)
- || null == r1mUnconditional || !(r1mUnconditional instanceof
- org.drip.measure.gaussian.R1MultivariateNormal))
- return null;
- org.drip.measure.gaussian.R1MultivariateNormal r1mnPrior =
- (org.drip.measure.gaussian.R1MultivariateNormal) r1mPrior;
- org.drip.measure.gaussian.R1MultivariateNormal r1mnConditional =
- (org.drip.measure.gaussian.R1MultivariateNormal) r1mConditional;
- org.drip.measure.gaussian.R1MultivariateNormal r1mnUnconditional =
- (org.drip.measure.gaussian.R1MultivariateNormal) r1mUnconditional;
- double[][] aadblPriorPrecision = r1mnPrior.covariance().precisionMatrix();
- double[][] aadblConditionalPrecision = r1mnConditional.covariance().precisionMatrix();
- int iNumVariate = aadblConditionalPrecision.length;
- double[] adblJointMean = new double[iNumVariate];
- double[][] aadblJointPrecision = new double[iNumVariate][iNumVariate];
- double[][] aadblPosteriorCovariance = new double[iNumVariate][iNumVariate];
- if (aadblPriorPrecision.length != iNumVariate) return null;
- double[] adblPrecisionWeightedPriorMean = org.drip.numerical.linearalgebra.Matrix.Product
- (aadblPriorPrecision, r1mnPrior.mean());
- if (null == adblPrecisionWeightedPriorMean) return null;
- double[] adblPrecisionWeightedConditionalMean = org.drip.numerical.linearalgebra.Matrix.Product
- (aadblConditionalPrecision, r1mnConditional.mean());
- if (null == adblPrecisionWeightedConditionalMean) return null;
- for (int i = 0; i < iNumVariate; ++i) {
- adblJointMean[i] = adblPrecisionWeightedPriorMean[i] + adblPrecisionWeightedConditionalMean[i];
- for (int j = 0; j < iNumVariate; ++j)
- aadblJointPrecision[i][j] = aadblPriorPrecision[i][j] + aadblConditionalPrecision[i][j];
- }
- double[][] aadblJointCovariance = org.drip.numerical.linearalgebra.Matrix.InvertUsingGaussianElimination
- (aadblJointPrecision);
- double[] adblJointPosteriorMean = org.drip.numerical.linearalgebra.Matrix.Product (aadblJointCovariance,
- adblJointMean);
- double[][] aadblUnconditionalCovariance = r1mnUnconditional.covariance().covarianceMatrix();
- org.drip.measure.continuous.MultivariateMeta meta = r1mnPrior.meta();
- for (int i = 0; i < iNumVariate; ++i) {
- for (int j = 0; j < iNumVariate; ++j)
- aadblPosteriorCovariance[i][j] = aadblJointCovariance[i][j] +
- aadblUnconditionalCovariance[i][j];
- }
- try {
- return new org.drip.measure.bayesian.R1MultivariateConvolutionMetrics (r1mPrior, r1mUnconditional,
- r1mConditional, new org.drip.measure.gaussian.R1MultivariateNormal (meta,
- adblJointPosteriorMean, new org.drip.measure.gaussian.Covariance (aadblJointCovariance)),
- new org.drip.measure.gaussian.R1MultivariateNormal (meta, adblJointPosteriorMean, new
- org.drip.measure.gaussian.Covariance (aadblPosteriorCovariance)));
- } catch (java.lang.Exception e) {
- e.printStackTrace();
- }
- return null;
- }
- }