R1UnivariateConvolutionMetrics.java

  1. package org.drip.measure.bayesian;

  2. /*
  3.  * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
  4.  */

  5. /*!
  6.  * Copyright (C) 2020 Lakshmi Krishnamurthy
  7.  * Copyright (C) 2019 Lakshmi Krishnamurthy
  8.  * Copyright (C) 2018 Lakshmi Krishnamurthy
  9.  * Copyright (C) 2017 Lakshmi Krishnamurthy
  10.  * Copyright (C) 2016 Lakshmi Krishnamurthy
  11.  *
  12.  *  This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
  13.  *      asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
  14.  *      analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
  15.  *      equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
  16.  *      numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
  17.  *      and computational support.
  18.  *  
  19.  *      https://lakshmidrip.github.io/DROP/
  20.  *  
  21.  *  DROP is composed of three modules:
  22.  *  
  23.  *  - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
  24.  *  - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
  25.  *  - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
  26.  *
  27.  *  DROP Product Core implements libraries for the following:
  28.  *  - Fixed Income Analytics
  29.  *  - Loan Analytics
  30.  *  - Transaction Cost Analytics
  31.  *
  32.  *  DROP Portfolio Core implements libraries for the following:
  33.  *  - Asset Allocation Analytics
  34.  *  - Asset Liability Management Analytics
  35.  *  - Capital Estimation Analytics
  36.  *  - Exposure Analytics
  37.  *  - Margin Analytics
  38.  *  - XVA Analytics
  39.  *
  40.  *  DROP Computational Core implements libraries for the following:
  41.  *  - Algorithm Support
  42.  *  - Computation Support
  43.  *  - Function Analysis
  44.  *  - Model Validation
  45.  *  - Numerical Analysis
  46.  *  - Numerical Optimizer
  47.  *  - Spline Builder
  48.  *  - Statistical Learning
  49.  *
  50.  *  Documentation for DROP is Spread Over:
  51.  *
  52.  *  - Main                     => https://lakshmidrip.github.io/DROP/
  53.  *  - Wiki                     => https://github.com/lakshmiDRIP/DROP/wiki
  54.  *  - GitHub                   => https://github.com/lakshmiDRIP/DROP
  55.  *  - Repo Layout Taxonomy     => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
  56.  *  - Javadoc                  => https://lakshmidrip.github.io/DROP/Javadoc/index.html
  57.  *  - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
  58.  *  - Release Versions         => https://lakshmidrip.github.io/DROP/version.html
  59.  *  - Community Credits        => https://lakshmidrip.github.io/DROP/credits.html
  60.  *  - Issues Catalog           => https://github.com/lakshmiDRIP/DROP/issues
  61.  *  - JUnit                    => https://lakshmidrip.github.io/DROP/junit/index.html
  62.  *  - Jacoco                   => https://lakshmidrip.github.io/DROP/jacoco/index.html
  63.  *
  64.  *  Licensed under the Apache License, Version 2.0 (the "License");
  65.  *      you may not use this file except in compliance with the License.
  66.  *  
  67.  *  You may obtain a copy of the License at
  68.  *      http://www.apache.org/licenses/LICENSE-2.0
  69.  *  
  70.  *  Unless required by applicable law or agreed to in writing, software
  71.  *      distributed under the License is distributed on an "AS IS" BASIS,
  72.  *      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  73.  *  
  74.  *  See the License for the specific language governing permissions and
  75.  *      limitations under the License.
  76.  */

  77. /**
  78.  * <i>R1UnivariateConvolutionMetrics</i> holds the Inputs and the Results of a Bayesian R<sup>1</sup>
  79.  *  Univariate Convolution Execution.
  80.  *
  81.  *  <br><br>
  82.  *  <ul>
  83.  *      <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
  84.  *      <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalAnalysisLibrary.md">Numerical Analysis Library</a></li>
  85.  *      <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/README.md">R<sup>d</sup> Continuous/Discrete Probability Measures</a></li>
  86.  *      <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/bayesian/README.md">Prior, Conditional, Posterior Theil Bayesian</a></li>
  87.  *  </ul>
  88.  *
  89.  * @author Lakshmi Krishnamurthy
  90.  */

  91. public class R1UnivariateConvolutionMetrics
  92. {
  93.     private org.drip.measure.continuous.R1Univariate _joint = null;
  94.     private org.drip.measure.continuous.R1Univariate _prior = null;
  95.     private org.drip.measure.continuous.R1Univariate _posterior = null;
  96.     private org.drip.measure.continuous.R1Univariate _conditional = null;
  97.     private org.drip.measure.continuous.R1Univariate _unconditional = null;

  98.     /**
  99.      * R1UnivariateConvolutionMetrics Constructor
  100.      *
  101.      * @param prior The R<sup>1</sup> Univariate Prior Distribution (Input)
  102.      * @param unconditional The R<sup>1</sup> Univariate Unconditional Distribution (Input)
  103.      * @param conditional The R<sup>1</sup> Univariate Conditional Distribution (Input)
  104.      * @param joint The R<sup>1</sup> Univariate Joint Distribution (Output)
  105.      * @param posterior The R<sup>1</sup> Univariate Posterior Distribution (Output)
  106.      *
  107.      * @throws java.lang.Exception Thrown if the Inputs are Invalid
  108.      */

  109.     public R1UnivariateConvolutionMetrics (
  110.         final org.drip.measure.continuous.R1Univariate prior,
  111.         final org.drip.measure.continuous.R1Univariate unconditional,
  112.         final org.drip.measure.continuous.R1Univariate conditional,
  113.         final org.drip.measure.continuous.R1Univariate joint,
  114.         final org.drip.measure.continuous.R1Univariate posterior)
  115.         throws java.lang.Exception
  116.     {
  117.         if (null == (_prior = prior) ||
  118.             null == (_unconditional = unconditional) ||
  119.             null == (_conditional = conditional) ||
  120.             null == (_joint = joint) ||
  121.             null == (_posterior = posterior)
  122.         )
  123.         {
  124.             throw new java.lang.Exception (
  125.                 "R1UnivariateConvolutionMetrics Constructor => Invalid Inputs!"
  126.             );
  127.         }
  128.     }

  129.     /**
  130.      * Retrieve the R<sup>1</sup> Univariate Prior Distribution
  131.      *
  132.      * @return The R<sup>1</sup> Univariate Prior Distribution
  133.      */

  134.     public org.drip.measure.continuous.R1Univariate prior()
  135.     {
  136.         return _prior;
  137.     }

  138.     /**
  139.      * Retrieve the R<sup>1</sup> Univariate Unconditional Distribution
  140.      *
  141.      * @return The R<sup>1</sup> Univariate Unconditional Distribution
  142.      */

  143.     public org.drip.measure.continuous.R1Univariate unconditional()
  144.     {
  145.         return _unconditional;
  146.     }

  147.     /**
  148.      * Retrieve the R<sup>1</sup> Univariate Conditional Distribution
  149.      *
  150.      * @return The R<sup>1</sup> Univariate Conditional Distribution
  151.      */

  152.     public org.drip.measure.continuous.R1Univariate conditional()
  153.     {
  154.         return _conditional;
  155.     }

  156.     /**
  157.      * Retrieve the R<sup>1</sup> Univariate Joint Distribution
  158.      *
  159.      * @return The R<sup>1</sup> Univariate Joint Distribution
  160.      */

  161.     public org.drip.measure.continuous.R1Univariate joint()
  162.     {
  163.         return _joint;
  164.     }

  165.     /**
  166.      * Retrieve the R<sup>1</sup> Univariate Posterior Distribution
  167.      *
  168.      * @return The R<sup>1</sup> Univariate Posterior Distribution
  169.      */

  170.     public org.drip.measure.continuous.R1Univariate posterior()
  171.     {
  172.         return _posterior;
  173.     }
  174. }