TheilMixedEstimationModel.java
- package org.drip.measure.bayesian;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2020 Lakshmi Krishnamurthy
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- * Copyright (C) 2018 Lakshmi Krishnamurthy
- * Copyright (C) 2017 Lakshmi Krishnamurthy
- * Copyright (C) 2016 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
- * asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
- * analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
- * equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
- * numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
- * and computational support.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three modules:
- *
- * - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
- *
- * DROP Product Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Loan Analytics
- * - Transaction Cost Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Asset Liability Management Analytics
- * - Capital Estimation Analytics
- * - Exposure Analytics
- * - Margin Analytics
- * - XVA Analytics
- *
- * DROP Computational Core implements libraries for the following:
- * - Algorithm Support
- * - Computation Support
- * - Function Analysis
- * - Model Validation
- * - Numerical Analysis
- * - Numerical Optimizer
- * - Spline Builder
- * - Statistical Learning
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>TheilMixedEstimationModel</i> implements the Theil's Mixed Model for the Estimation of the Distribution
- * Parameters. The Reference is:
- * <br><br>
- * <ul>
- * <li>
- * Theil, H. (1971): <i>Principles of Econometrics</i> <b>Wiley</b>
- * </li>
- * </ul>
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalAnalysisLibrary.md">Numerical Analysis Library</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/README.md">R<sup>d</sup> Continuous/Discrete Probability Measures</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/bayesian/README.md">Prior, Conditional, Posterior Theil Bayesian</a></li>
- * </ul>
- *
- * @author Lakshmi Krishnamurthy
- */
- public class TheilMixedEstimationModel {
- /**
- * Generate the Joint Mixed Estimation Model Joint/Posterior Metrics
- *
- * @param meta The R^1 Multivariate Meta Descriptors
- * @param pdl1 Projection Distribution and Loading #1
- * @param pdl2 Projection Distribution and Loading #2
- * @param r1mnUnconditional The R^1 Multivariate Normal Unconditional Distribution
- *
- * @return The Joint Mixed Estimation Model Joint/Posterior Metrics
- */
- public static final org.drip.measure.bayesian.R1MultivariateConvolutionMetrics GenerateComposite (
- final org.drip.measure.continuous.MultivariateMeta meta,
- final org.drip.measure.bayesian.ProjectionDistributionLoading pdl1,
- final org.drip.measure.bayesian.ProjectionDistributionLoading pdl2,
- final org.drip.measure.gaussian.R1MultivariateNormal r1mnUnconditional)
- {
- if (null == meta || null == pdl1 || null == pdl2 || null == r1mnUnconditional) return null;
- int iNumScopingVariate = meta.numVariable();
- if (iNumScopingVariate != pdl1.numberOfScopingVariate() || iNumScopingVariate !=
- pdl2.numberOfScopingVariate() || iNumScopingVariate != r1mnUnconditional.meta().numVariable())
- return null;
- org.drip.measure.continuous.R1Multivariate r1m1 = pdl1.distribution();
- org.drip.measure.continuous.R1Multivariate r1m2 = pdl2.distribution();
- if (!(r1m1 instanceof org.drip.measure.gaussian.R1MultivariateNormal) || !(r1m2 instanceof
- org.drip.measure.gaussian.R1MultivariateNormal))
- return null;
- double[] adblJointPrecisionWeightedMean = new double[iNumScopingVariate];
- double[][] aadblJointPrecision = new double[iNumScopingVariate][iNumScopingVariate];
- double[][] aadblPosteriorCovariance = new double[iNumScopingVariate][iNumScopingVariate];
- org.drip.measure.gaussian.R1MultivariateNormal r1mn1 =
- (org.drip.measure.gaussian.R1MultivariateNormal) r1m1;
- org.drip.measure.gaussian.R1MultivariateNormal r1mn2 =
- (org.drip.measure.gaussian.R1MultivariateNormal) r1m2;
- double[][] aadblScopingLoading1 = pdl1.scopingLoading();
- double[][] aadblScopingLoading2 = pdl2.scopingLoading();
- double[][] aadblScopingWeightedPrecision1 = org.drip.numerical.linearalgebra.Matrix.Product
- (org.drip.numerical.linearalgebra.Matrix.Transpose (aadblScopingLoading1),
- r1mn1.covariance().precisionMatrix());
- double[][] aadblScopingWeightedPrecision2 = org.drip.numerical.linearalgebra.Matrix.Product
- (org.drip.numerical.linearalgebra.Matrix.Transpose (aadblScopingLoading2),
- r1mn2.covariance().precisionMatrix());
- double[][] aadblScopingSpacePrecision1 = org.drip.numerical.linearalgebra.Matrix.Product
- (aadblScopingWeightedPrecision1, aadblScopingLoading1);
- double[][] aadblScopingSpacePrecision2 = org.drip.numerical.linearalgebra.Matrix.Product
- (aadblScopingWeightedPrecision2, aadblScopingLoading2);
- if (null == aadblScopingSpacePrecision1 || null == aadblScopingSpacePrecision2) return null;
- double[] adblPrecisionWeightedMean1 = org.drip.numerical.linearalgebra.Matrix.Product
- (aadblScopingWeightedPrecision1, r1mn1.mean());
- double[] adblPrecisionWeightedMean2 = org.drip.numerical.linearalgebra.Matrix.Product
- (aadblScopingWeightedPrecision2, r1mn2.mean());
- if (null == adblPrecisionWeightedMean1 || null == adblPrecisionWeightedMean2) return null;
- for (int i = 0; i < iNumScopingVariate; ++i) {
- adblJointPrecisionWeightedMean[i] = adblPrecisionWeightedMean1[i] +
- adblPrecisionWeightedMean2[i];
- for (int j = 0; j < iNumScopingVariate; ++j)
- aadblJointPrecision[i][j] = aadblScopingSpacePrecision1[i][j] +
- aadblScopingSpacePrecision2[i][j];
- }
- double[][] aadblJointCovariance = org.drip.numerical.linearalgebra.Matrix.InvertUsingGaussianElimination
- (aadblJointPrecision);
- double[] adblJointPosteriorMean = org.drip.numerical.linearalgebra.Matrix.Product (aadblJointCovariance,
- adblJointPrecisionWeightedMean);
- double[][] aadblUnconditionalCovariance = r1mnUnconditional.covariance().covarianceMatrix();
- for (int i = 0; i < iNumScopingVariate; ++i) {
- for (int j = 0; j < iNumScopingVariate; ++j)
- aadblPosteriorCovariance[i][j] = aadblJointCovariance[i][j] +
- aadblUnconditionalCovariance[i][j];
- }
- try {
- return new org.drip.measure.bayesian.R1MultivariateConvolutionMetrics (r1mn1, r1mnUnconditional, r1mn2, new
- org.drip.measure.gaussian.R1MultivariateNormal (meta, adblJointPosteriorMean, new
- org.drip.measure.gaussian.Covariance (aadblJointCovariance)), new
- org.drip.measure.gaussian.R1MultivariateNormal (meta, adblJointPosteriorMean, new
- org.drip.measure.gaussian.Covariance (aadblPosteriorCovariance)));
- } catch (java.lang.Exception e) {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Generate the Combined R^1 Multivariate Normal Distribution from the SPVD and the Named Projections
- *
- * @param spvd The Scoping/Projection Distribution
- * @param strProjection1 Name of Projection #1
- * @param strProjection2 Name of Projection #2
- * @param r1mnUnconditional The R^1 Multivariate Normal Unconditional Distribution
- *
- * @return The Combined R^1 Multivariate Normal Distribution
- */
- public static final org.drip.measure.bayesian.R1MultivariateConvolutionMetrics GenerateComposite (
- final org.drip.measure.bayesian.ScopingProjectionVariateDistribution spvd,
- final java.lang.String strProjection1,
- final java.lang.String strProjection2,
- final org.drip.measure.gaussian.R1MultivariateNormal r1mnUnconditional)
- {
- return null == spvd ? null : GenerateComposite (spvd.scopingDistribution().meta(),
- spvd.projectionDistributionLoading (strProjection1), spvd.projectionDistributionLoading
- (strProjection2), r1mnUnconditional);
- }
- /**
- * Generate the Combined R^1 Multivariate Normal Distribution from the SPVD, the NATIVE Projection, and
- * the Named Projection
- *
- * @param spvd The Scoping/Projection Distribution
- * @param strProjection Name of Projection
- * @param r1mnUnconditional The R^1 Multivariate Normal Unconditional Distribution
- *
- * @return The Combined R^1 Multivariate Normal Distribution
- */
- public static final org.drip.measure.bayesian.R1MultivariateConvolutionMetrics GenerateComposite (
- final org.drip.measure.bayesian.ScopingProjectionVariateDistribution spvd,
- final java.lang.String strProjection,
- final org.drip.measure.gaussian.R1MultivariateNormal r1mnUnconditional)
- {
- if (null == spvd) return null;
- org.drip.measure.continuous.R1Multivariate r1m = spvd.scopingDistribution();
- if (!(r1m instanceof org.drip.measure.gaussian.R1MultivariateNormal)) return null;
- org.drip.measure.gaussian.R1MultivariateNormal r1mnScoping =
- (org.drip.measure.gaussian.R1MultivariateNormal) r1m;
- return GenerateComposite (r1mnScoping.meta(), spvd.projectionDistributionLoading ("NATIVE"),
- spvd.projectionDistributionLoading (strProjection), r1mnUnconditional);
- }
- /**
- * Generate the Projection Space Scoping Mean
- *
- * @param spvd The Scoping/Projection Distribution
- * @param strProjection Name of Projection
- *
- * @return The Projection Space Scoping Mean
- */
- public static final double[] ProjectionSpaceScopingMean (
- final org.drip.measure.bayesian.ScopingProjectionVariateDistribution spvd,
- final java.lang.String strProjection)
- {
- if (null == spvd) return null;
- org.drip.measure.bayesian.ProjectionDistributionLoading pdl = spvd.projectionDistributionLoading
- (strProjection);
- return null == pdl ? null : org.drip.numerical.linearalgebra.Matrix.Product (pdl.scopingLoading(),
- spvd.scopingDistribution().mean());
- }
- /**
- * Generate the Projection Space Projection-Scoping Mean Differential
- *
- * @param spvd The Scoping/Projection Distribution
- * @param strProjection Name of Projection
- *
- * @return The Projection Space Projection-Scoping Mean Differential
- */
- public static final double[] ProjectionSpaceScopingDifferential (
- final org.drip.measure.bayesian.ScopingProjectionVariateDistribution spvd,
- final java.lang.String strProjection)
- {
- if (null == spvd) return null;
- org.drip.measure.bayesian.ProjectionDistributionLoading pdl = spvd.projectionDistributionLoading
- (strProjection);
- if (null == pdl) return null;
- double[] adblProjectionSpaceScopingMean = org.drip.numerical.linearalgebra.Matrix.Product
- (pdl.scopingLoading(), spvd.scopingDistribution().mean());
- if (null == adblProjectionSpaceScopingMean) return null;
- int iNumProjection = adblProjectionSpaceScopingMean.length;
- double[] adblProjectionSpaceScopingDifferential = new double[iNumProjection];
- double[] adblProjectionMean = pdl.distribution().mean();
- for (int i = 0; i < iNumProjection; ++i)
- adblProjectionSpaceScopingDifferential[i] = adblProjectionMean[i] -
- adblProjectionSpaceScopingMean[i];
- return adblProjectionSpaceScopingDifferential;
- }
- /**
- * Generate the Projection Space Scoping Co-variance
- *
- * @param spvd The Scoping/Projection Distribution
- * @param strProjection Name of Projection
- *
- * @return The Projection Space Scoping Co-variance
- */
- public static final org.drip.measure.gaussian.Covariance ProjectionSpaceScopingCovariance (
- final org.drip.measure.bayesian.ScopingProjectionVariateDistribution spvd,
- final java.lang.String strProjection)
- {
- if (null == spvd) return null;
- org.drip.measure.continuous.R1Multivariate r1mScoping = spvd.scopingDistribution();
- if (!(r1mScoping instanceof org.drip.measure.gaussian.R1MultivariateNormal)) return null;
- org.drip.measure.gaussian.R1MultivariateNormal r1mnScoping =
- (org.drip.measure.gaussian.R1MultivariateNormal) r1mScoping;
- org.drip.measure.bayesian.ProjectionDistributionLoading pdl = spvd.projectionDistributionLoading
- (strProjection);
- if (null == pdl) return null;
- double[][] aadblScopingLoading = pdl.scopingLoading();
- try {
- return new org.drip.measure.gaussian.Covariance (org.drip.numerical.linearalgebra.Matrix.Product
- (aadblScopingLoading, org.drip.numerical.linearalgebra.Matrix.Product
- (r1mnScoping.covariance().covarianceMatrix(),
- org.drip.numerical.linearalgebra.Matrix.Transpose (aadblScopingLoading))));
- } catch (java.lang.Exception e) {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Compute the Shadow of the Scoping on Projection Transpose
- *
- * @param spvd The Scoping/Projection Distribution
- * @param strProjection Name of Projection
- *
- * @return The Shadow of the Scoping on Projection Transpose
- */
- public static final double[][] ShadowScopingProjectionTranspose (
- final org.drip.measure.bayesian.ScopingProjectionVariateDistribution spvd,
- final java.lang.String strProjection)
- {
- if (null == spvd) return null;
- org.drip.measure.continuous.R1Multivariate r1mScoping = spvd.scopingDistribution();
- if (!(r1mScoping instanceof org.drip.measure.gaussian.R1MultivariateNormal)) return null;
- org.drip.measure.bayesian.ProjectionDistributionLoading pdl = spvd.projectionDistributionLoading
- (strProjection);
- return null == pdl ? null : org.drip.numerical.linearalgebra.Matrix.Product
- (((org.drip.measure.gaussian.R1MultivariateNormal) r1mScoping).covariance().covarianceMatrix(),
- org.drip.numerical.linearalgebra.Matrix.Transpose (pdl.scopingLoading()));
- }
- /**
- * Compute the Shadow of the Scoping on Projection
- *
- * @param spvd The Scoping/Projection Distribution
- * @param strProjection Name of Projection
- *
- * @return The Shadow of the Scoping on Projection
- */
- public static final double[][] ShadowScopingProjection (
- final org.drip.measure.bayesian.ScopingProjectionVariateDistribution spvd,
- final java.lang.String strProjection)
- {
- if (null == spvd) return null;
- org.drip.measure.continuous.R1Multivariate r1mScoping = spvd.scopingDistribution();
- org.drip.measure.bayesian.ProjectionDistributionLoading pdl = spvd.projectionDistributionLoading
- (strProjection);
- return !(r1mScoping instanceof org.drip.measure.gaussian.R1MultivariateNormal) || null == pdl ? null
- : org.drip.numerical.linearalgebra.Matrix.Product (pdl.scopingLoading(),
- ((org.drip.measure.gaussian.R1MultivariateNormal)
- r1mScoping).covariance().covarianceMatrix());
- }
- /**
- * Compute the Projection Precision Mean Dot Product Array
- *
- * @param spvd The Scoping/Projection Distribution
- * @param strProjection Name of Projection
- *
- * @return The Projection Precision Mean Dot Product Array
- */
- public static final double[] ProjectionPrecisionMeanProduct (
- final org.drip.measure.bayesian.ScopingProjectionVariateDistribution spvd,
- final java.lang.String strProjection)
- {
- if (null == spvd) return null;
- org.drip.measure.bayesian.ProjectionDistributionLoading pdl = spvd.projectionDistributionLoading
- (strProjection);
- if (null == pdl) return null;
- org.drip.measure.continuous.R1Multivariate r1mProjection = pdl.distribution();
- return !(r1mProjection instanceof org.drip.measure.gaussian.R1MultivariateNormal) ? null :
- org.drip.numerical.linearalgebra.Matrix.Product (((org.drip.measure.gaussian.R1MultivariateNormal)
- r1mProjection).covariance().precisionMatrix(), r1mProjection.mean());
- }
- /**
- * Compute the Projection Induced Scoping Mean Deviation
- *
- * @param spvd The Scoping/Projection Distribution
- * @param strProjection Name of Projection
- *
- * @return The Projection Induced Scoping Mean Deviation
- */
- public static final double[] ProjectionInducedScopingDeviation (
- final org.drip.measure.bayesian.ScopingProjectionVariateDistribution spvd,
- final java.lang.String strProjection)
- {
- if (null == spvd) return null;
- org.drip.measure.continuous.R1Multivariate r1mScoping = spvd.scopingDistribution();
- if (!(r1mScoping instanceof org.drip.measure.gaussian.R1MultivariateNormal)) return null;
- org.drip.measure.gaussian.R1MultivariateNormal r1mnScoping =
- (org.drip.measure.gaussian.R1MultivariateNormal) r1mScoping;
- org.drip.measure.bayesian.ProjectionDistributionLoading pdl = spvd.projectionDistributionLoading
- (strProjection);
- if (null == pdl) return null;
- double[][] aadblScopingLoading = pdl.scopingLoading();
- double[][] aadblProjectionScopingShadow = org.drip.numerical.linearalgebra.Matrix.Product
- (r1mnScoping.covariance().covarianceMatrix(), org.drip.numerical.linearalgebra.Matrix.Transpose
- (aadblScopingLoading));
- double[] adblProjectionSpaceScopingMean = org.drip.numerical.linearalgebra.Matrix.Product
- (aadblScopingLoading, r1mScoping.mean());
- if (null == adblProjectionSpaceScopingMean) return null;
- int iNumProjection = adblProjectionSpaceScopingMean.length;
- double[] adblProjectionSpaceScopingDifferential = new double[iNumProjection];
- double[] adblProjectionMean = pdl.distribution().mean();
- for (int i = 0; i < iNumProjection; ++i)
- adblProjectionSpaceScopingDifferential[i] = adblProjectionMean[i] -
- adblProjectionSpaceScopingMean[i];
- return org.drip.numerical.linearalgebra.Matrix.Product (aadblProjectionScopingShadow,
- org.drip.numerical.linearalgebra.Matrix.Product
- (org.drip.numerical.linearalgebra.Matrix.InvertUsingGaussianElimination
- (org.drip.numerical.linearalgebra.Matrix.Product (aadblScopingLoading,
- aadblProjectionScopingShadow)), adblProjectionSpaceScopingDifferential));
- }
- /**
- * Compute the Projection Induced Scoping Deviation Adjusted Mean
- *
- * @param spvd The Scoping/Projection Distribution
- * @param strProjection Name of Projection
- *
- * @return The Projection Induced Scoping Deviation Adjusted Mean
- */
- public static final double[] ProjectionInducedScopingMean (
- final org.drip.measure.bayesian.ScopingProjectionVariateDistribution spvd,
- final java.lang.String strProjection)
- {
- if (null == spvd) return null;
- org.drip.measure.continuous.R1Multivariate r1mScoping = spvd.scopingDistribution();
- double[] adblScopingMean = r1mScoping.mean();
- int iNumScopingVariate = r1mScoping.meta().numVariable();
- if (!(r1mScoping instanceof org.drip.measure.gaussian.R1MultivariateNormal)) return null;
- org.drip.measure.gaussian.R1MultivariateNormal r1mnScoping =
- (org.drip.measure.gaussian.R1MultivariateNormal) r1mScoping;
- org.drip.measure.bayesian.ProjectionDistributionLoading pdl = spvd.projectionDistributionLoading
- (strProjection);
- if (null == pdl) return null;
- double[][] aadblScopingLoading = pdl.scopingLoading();
- double[][] aadblProjectionScopingShadow = org.drip.numerical.linearalgebra.Matrix.Product
- (r1mnScoping.covariance().covarianceMatrix(), org.drip.numerical.linearalgebra.Matrix.Transpose
- (aadblScopingLoading));
- double[] adblProjectionSpaceScopingMean = org.drip.numerical.linearalgebra.Matrix.Product
- (aadblScopingLoading, adblScopingMean);
- if (null == adblProjectionSpaceScopingMean) return null;
- int iNumProjection = adblProjectionSpaceScopingMean.length;
- double[] adblProjectionInducedScopingMean = new double[iNumScopingVariate];
- double[] adblProjectionSpaceScopingDifferential = new double[iNumProjection];
- double[] adblProjectionMean = pdl.distribution().mean();
- for (int i = 0; i < iNumProjection; ++i)
- adblProjectionSpaceScopingDifferential[i] = adblProjectionMean[i] -
- adblProjectionSpaceScopingMean[i];
- double[] adblProjectionInducedScopingDeviation = org.drip.numerical.linearalgebra.Matrix.Product
- (aadblProjectionScopingShadow, org.drip.numerical.linearalgebra.Matrix.Product
- (org.drip.numerical.linearalgebra.Matrix.InvertUsingGaussianElimination
- (org.drip.numerical.linearalgebra.Matrix.Product (aadblScopingLoading,
- aadblProjectionScopingShadow)), adblProjectionSpaceScopingDifferential));
- if (null == adblProjectionInducedScopingDeviation) return null;
- for (int i = 0; i < iNumScopingVariate; ++i)
- adblProjectionInducedScopingMean[i] = adblScopingMean[i] +
- adblProjectionInducedScopingDeviation[i];
- return adblProjectionInducedScopingMean;
- }
- /**
- * Compute the Asset Space Projection Co-variance
- *
- * @param spvd The Scoping/Projection Distribution
- * @param strProjection Name of Projection
- *
- * @return The Asset Space Projection Co-variance
- */
- public static final double[][] AssetSpaceProjectionCovariance (
- final org.drip.measure.bayesian.ScopingProjectionVariateDistribution spvd,
- final java.lang.String strProjection)
- {
- if (null == spvd) return null;
- org.drip.measure.bayesian.ProjectionDistributionLoading pdl = spvd.projectionDistributionLoading
- (strProjection);
- if (null == pdl) return null;
- org.drip.measure.continuous.R1Multivariate r1mProjection = pdl.distribution();
- if (!(r1mProjection instanceof org.drip.measure.gaussian.R1MultivariateNormal)) return null;
- double[][] aadblScopingLoading = pdl.scopingLoading();
- return org.drip.numerical.linearalgebra.Matrix.Product (org.drip.numerical.linearalgebra.Matrix.Transpose
- (aadblScopingLoading), org.drip.numerical.linearalgebra.Matrix.Product
- (((org.drip.measure.gaussian.R1MultivariateNormal)
- r1mProjection).covariance().covarianceMatrix(), aadblScopingLoading));
- }
- /**
- * Compute the Projection Space Asset Co-variance
- *
- * @param spvd The Scoping/Projection Distribution
- * @param strProjection Name of Projection
- *
- * @return The Projection Space Asset Co-variance
- */
- public static final double[][] ProjectionSpaceAssetCovariance (
- final org.drip.measure.bayesian.ScopingProjectionVariateDistribution spvd,
- final java.lang.String strProjection)
- {
- if (null == spvd) return null;
- org.drip.measure.continuous.R1Multivariate r1mScoping = spvd.scopingDistribution();
- if (!(r1mScoping instanceof org.drip.measure.gaussian.R1MultivariateNormal)) return null;
- org.drip.measure.bayesian.ProjectionDistributionLoading pdl = spvd.projectionDistributionLoading
- (strProjection);
- if (null == pdl) return null;
- double[][] aadblScopingLoading = pdl.scopingLoading();
- return org.drip.numerical.linearalgebra.Matrix.Product (aadblScopingLoading,
- org.drip.numerical.linearalgebra.Matrix.Product (((org.drip.measure.gaussian.R1MultivariateNormal)
- r1mScoping).covariance().covarianceMatrix(), org.drip.numerical.linearalgebra.Matrix.Transpose
- (aadblScopingLoading)));
- }
- /**
- * Compute the Projection Induced Scoping Deviation Adjusted Mean
- *
- * @param spvd The Scoping/Projection Distribution
- * @param strProjection Name of Projection
- * @param r1mnUnconditional The Unconditional Distribution
- *
- * @return The Projection Induced Scoping Deviation Adjusted Mean
- */
- public static final org.drip.measure.gaussian.R1MultivariateNormal ProjectionInducedScopingDistribution (
- final org.drip.measure.bayesian.ScopingProjectionVariateDistribution spvd,
- final java.lang.String strProjection,
- final org.drip.measure.gaussian.R1MultivariateNormal r1mnUnconditional)
- {
- if (null == spvd || null == r1mnUnconditional) return null;
- org.drip.measure.continuous.R1Multivariate r1mScoping = spvd.scopingDistribution();
- double[] adblScopingMean = r1mScoping.mean();
- int iNumScopingVariate = r1mScoping.meta().numVariable();
- if (!(r1mScoping instanceof org.drip.measure.gaussian.R1MultivariateNormal)) return null;
- org.drip.measure.gaussian.R1MultivariateNormal r1mnScoping =
- (org.drip.measure.gaussian.R1MultivariateNormal) r1mScoping;
- org.drip.measure.bayesian.ProjectionDistributionLoading pdl = spvd.projectionDistributionLoading
- (strProjection);
- if (null == pdl) return null;
- double[][] aadblScopingLoading = pdl.scopingLoading();
- double[][] aadblProjectionScopingShadow = org.drip.numerical.linearalgebra.Matrix.Product
- (r1mnScoping.covariance().covarianceMatrix(), org.drip.numerical.linearalgebra.Matrix.Transpose
- (aadblScopingLoading));
- double[] adblProjectionSpaceScopingMean = org.drip.numerical.linearalgebra.Matrix.Product
- (aadblScopingLoading, adblScopingMean);
- if (null == adblProjectionSpaceScopingMean) return null;
- int iNumProjection = adblProjectionSpaceScopingMean.length;
- double[] adblProjectionInducedScopingMean = new double[iNumScopingVariate];
- double[] adblProjectionSpaceScopingDifferential = new double[iNumProjection];
- double[] adblProjectionMean = pdl.distribution().mean();
- for (int i = 0; i < iNumProjection; ++i)
- adblProjectionSpaceScopingDifferential[i] = adblProjectionMean[i] -
- adblProjectionSpaceScopingMean[i];
- double[] adblProjectionInducedScopingDeviation = org.drip.numerical.linearalgebra.Matrix.Product
- (aadblProjectionScopingShadow, org.drip.numerical.linearalgebra.Matrix.Product
- (org.drip.numerical.linearalgebra.Matrix.InvertUsingGaussianElimination
- (org.drip.numerical.linearalgebra.Matrix.Product (aadblScopingLoading,
- aadblProjectionScopingShadow)), adblProjectionSpaceScopingDifferential));
- if (null == adblProjectionInducedScopingDeviation) return null;
- for (int i = 0; i < iNumScopingVariate; ++i)
- adblProjectionInducedScopingMean[i] = adblScopingMean[i] +
- adblProjectionInducedScopingDeviation[i];
- org.drip.measure.continuous.R1Multivariate r1mProjection = pdl.distribution();
- if (!(r1mProjection instanceof org.drip.measure.gaussian.R1MultivariateNormal)) return null;
- try {
- return new org.drip.measure.gaussian.R1MultivariateNormal (r1mnUnconditional.meta(),
- adblProjectionInducedScopingMean, new org.drip.measure.gaussian.Covariance
- (org.drip.numerical.linearalgebra.Matrix.Product
- (org.drip.numerical.linearalgebra.Matrix.Transpose (aadblScopingLoading),
- org.drip.numerical.linearalgebra.Matrix.Product
- (((org.drip.measure.gaussian.R1MultivariateNormal)
- r1mProjection).covariance().covarianceMatrix(), aadblScopingLoading))));
- } catch (java.lang.Exception e) {
- e.printStackTrace();
- }
- return null;
- }
- }