TheilMixedEstimationModel.java

  1. package org.drip.measure.bayesian;

  2. /*
  3.  * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
  4.  */

  5. /*!
  6.  * Copyright (C) 2020 Lakshmi Krishnamurthy
  7.  * Copyright (C) 2019 Lakshmi Krishnamurthy
  8.  * Copyright (C) 2018 Lakshmi Krishnamurthy
  9.  * Copyright (C) 2017 Lakshmi Krishnamurthy
  10.  * Copyright (C) 2016 Lakshmi Krishnamurthy
  11.  *
  12.  *  This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
  13.  *      asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
  14.  *      analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
  15.  *      equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
  16.  *      numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
  17.  *      and computational support.
  18.  *  
  19.  *      https://lakshmidrip.github.io/DROP/
  20.  *  
  21.  *  DROP is composed of three modules:
  22.  *  
  23.  *  - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
  24.  *  - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
  25.  *  - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
  26.  *
  27.  *  DROP Product Core implements libraries for the following:
  28.  *  - Fixed Income Analytics
  29.  *  - Loan Analytics
  30.  *  - Transaction Cost Analytics
  31.  *
  32.  *  DROP Portfolio Core implements libraries for the following:
  33.  *  - Asset Allocation Analytics
  34.  *  - Asset Liability Management Analytics
  35.  *  - Capital Estimation Analytics
  36.  *  - Exposure Analytics
  37.  *  - Margin Analytics
  38.  *  - XVA Analytics
  39.  *
  40.  *  DROP Computational Core implements libraries for the following:
  41.  *  - Algorithm Support
  42.  *  - Computation Support
  43.  *  - Function Analysis
  44.  *  - Model Validation
  45.  *  - Numerical Analysis
  46.  *  - Numerical Optimizer
  47.  *  - Spline Builder
  48.  *  - Statistical Learning
  49.  *
  50.  *  Documentation for DROP is Spread Over:
  51.  *
  52.  *  - Main                     => https://lakshmidrip.github.io/DROP/
  53.  *  - Wiki                     => https://github.com/lakshmiDRIP/DROP/wiki
  54.  *  - GitHub                   => https://github.com/lakshmiDRIP/DROP
  55.  *  - Repo Layout Taxonomy     => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
  56.  *  - Javadoc                  => https://lakshmidrip.github.io/DROP/Javadoc/index.html
  57.  *  - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
  58.  *  - Release Versions         => https://lakshmidrip.github.io/DROP/version.html
  59.  *  - Community Credits        => https://lakshmidrip.github.io/DROP/credits.html
  60.  *  - Issues Catalog           => https://github.com/lakshmiDRIP/DROP/issues
  61.  *  - JUnit                    => https://lakshmidrip.github.io/DROP/junit/index.html
  62.  *  - Jacoco                   => https://lakshmidrip.github.io/DROP/jacoco/index.html
  63.  *
  64.  *  Licensed under the Apache License, Version 2.0 (the "License");
  65.  *      you may not use this file except in compliance with the License.
  66.  *  
  67.  *  You may obtain a copy of the License at
  68.  *      http://www.apache.org/licenses/LICENSE-2.0
  69.  *  
  70.  *  Unless required by applicable law or agreed to in writing, software
  71.  *      distributed under the License is distributed on an "AS IS" BASIS,
  72.  *      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  73.  *  
  74.  *  See the License for the specific language governing permissions and
  75.  *      limitations under the License.
  76.  */

  77. /**
  78.  * <i>TheilMixedEstimationModel</i> implements the Theil's Mixed Model for the Estimation of the Distribution
  79.  * Parameters. The Reference is:
  80.  * <br><br>
  81.  *  <ul>
  82.  *      <li>
  83.  *          Theil, H. (1971): <i>Principles of Econometrics</i> <b>Wiley</b>
  84.  *      </li>
  85.  *  </ul>
  86.  *
  87.  *  <br><br>
  88.  *  <ul>
  89.  *      <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
  90.  *      <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalAnalysisLibrary.md">Numerical Analysis Library</a></li>
  91.  *      <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/README.md">R<sup>d</sup> Continuous/Discrete Probability Measures</a></li>
  92.  *      <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/bayesian/README.md">Prior, Conditional, Posterior Theil Bayesian</a></li>
  93.  *  </ul>
  94.  *
  95.  * @author Lakshmi Krishnamurthy
  96.  */

  97. public class TheilMixedEstimationModel {

  98.     /**
  99.      * Generate the Joint Mixed Estimation Model Joint/Posterior Metrics
  100.      *
  101.      * @param meta The R^1 Multivariate Meta Descriptors
  102.      * @param pdl1 Projection Distribution and Loading #1
  103.      * @param pdl2 Projection Distribution and Loading #2
  104.      * @param r1mnUnconditional The R^1 Multivariate Normal Unconditional Distribution
  105.      *
  106.      * @return The Joint Mixed Estimation Model Joint/Posterior Metrics
  107.      */

  108.     public static final org.drip.measure.bayesian.R1MultivariateConvolutionMetrics GenerateComposite (
  109.         final org.drip.measure.continuous.MultivariateMeta meta,
  110.         final org.drip.measure.bayesian.ProjectionDistributionLoading pdl1,
  111.         final org.drip.measure.bayesian.ProjectionDistributionLoading pdl2,
  112.         final org.drip.measure.gaussian.R1MultivariateNormal r1mnUnconditional)
  113.     {
  114.         if (null == meta || null == pdl1 || null == pdl2 || null == r1mnUnconditional) return null;

  115.         int iNumScopingVariate = meta.numVariable();

  116.         if (iNumScopingVariate != pdl1.numberOfScopingVariate() || iNumScopingVariate !=
  117.             pdl2.numberOfScopingVariate() || iNumScopingVariate != r1mnUnconditional.meta().numVariable())
  118.             return null;

  119.         org.drip.measure.continuous.R1Multivariate r1m1 = pdl1.distribution();

  120.         org.drip.measure.continuous.R1Multivariate r1m2 = pdl2.distribution();

  121.         if (!(r1m1 instanceof org.drip.measure.gaussian.R1MultivariateNormal) || !(r1m2 instanceof
  122.             org.drip.measure.gaussian.R1MultivariateNormal))
  123.             return null;

  124.         double[] adblJointPrecisionWeightedMean = new double[iNumScopingVariate];
  125.         double[][] aadblJointPrecision = new double[iNumScopingVariate][iNumScopingVariate];
  126.         double[][] aadblPosteriorCovariance = new double[iNumScopingVariate][iNumScopingVariate];
  127.         org.drip.measure.gaussian.R1MultivariateNormal r1mn1 =
  128.             (org.drip.measure.gaussian.R1MultivariateNormal) r1m1;
  129.         org.drip.measure.gaussian.R1MultivariateNormal r1mn2 =
  130.             (org.drip.measure.gaussian.R1MultivariateNormal) r1m2;

  131.         double[][] aadblScopingLoading1 = pdl1.scopingLoading();

  132.         double[][] aadblScopingLoading2 = pdl2.scopingLoading();

  133.         double[][] aadblScopingWeightedPrecision1 = org.drip.numerical.linearalgebra.Matrix.Product
  134.             (org.drip.numerical.linearalgebra.Matrix.Transpose (aadblScopingLoading1),
  135.                 r1mn1.covariance().precisionMatrix());

  136.         double[][] aadblScopingWeightedPrecision2 = org.drip.numerical.linearalgebra.Matrix.Product
  137.             (org.drip.numerical.linearalgebra.Matrix.Transpose (aadblScopingLoading2),
  138.                 r1mn2.covariance().precisionMatrix());

  139.         double[][] aadblScopingSpacePrecision1 = org.drip.numerical.linearalgebra.Matrix.Product
  140.             (aadblScopingWeightedPrecision1, aadblScopingLoading1);

  141.         double[][] aadblScopingSpacePrecision2 = org.drip.numerical.linearalgebra.Matrix.Product
  142.             (aadblScopingWeightedPrecision2, aadblScopingLoading2);

  143.         if (null == aadblScopingSpacePrecision1 || null == aadblScopingSpacePrecision2) return null;

  144.         double[] adblPrecisionWeightedMean1 = org.drip.numerical.linearalgebra.Matrix.Product
  145.             (aadblScopingWeightedPrecision1, r1mn1.mean());

  146.         double[] adblPrecisionWeightedMean2 = org.drip.numerical.linearalgebra.Matrix.Product
  147.             (aadblScopingWeightedPrecision2, r1mn2.mean());

  148.         if (null == adblPrecisionWeightedMean1 || null == adblPrecisionWeightedMean2) return null;

  149.         for (int i = 0; i < iNumScopingVariate; ++i) {
  150.             adblJointPrecisionWeightedMean[i] = adblPrecisionWeightedMean1[i] +
  151.                 adblPrecisionWeightedMean2[i];

  152.             for (int j = 0; j < iNumScopingVariate; ++j)
  153.                 aadblJointPrecision[i][j] = aadblScopingSpacePrecision1[i][j] +
  154.                     aadblScopingSpacePrecision2[i][j];
  155.         }

  156.         double[][] aadblJointCovariance = org.drip.numerical.linearalgebra.Matrix.InvertUsingGaussianElimination
  157.             (aadblJointPrecision);

  158.         double[] adblJointPosteriorMean = org.drip.numerical.linearalgebra.Matrix.Product (aadblJointCovariance,
  159.             adblJointPrecisionWeightedMean);

  160.         double[][] aadblUnconditionalCovariance = r1mnUnconditional.covariance().covarianceMatrix();

  161.         for (int i = 0; i < iNumScopingVariate; ++i) {
  162.             for (int j = 0; j < iNumScopingVariate; ++j)
  163.                 aadblPosteriorCovariance[i][j] = aadblJointCovariance[i][j] +
  164.                     aadblUnconditionalCovariance[i][j];
  165.         }

  166.         try {
  167.             return new org.drip.measure.bayesian.R1MultivariateConvolutionMetrics (r1mn1, r1mnUnconditional, r1mn2, new
  168.                 org.drip.measure.gaussian.R1MultivariateNormal (meta, adblJointPosteriorMean, new
  169.                     org.drip.measure.gaussian.Covariance (aadblJointCovariance)), new
  170.                         org.drip.measure.gaussian.R1MultivariateNormal (meta, adblJointPosteriorMean, new
  171.                             org.drip.measure.gaussian.Covariance (aadblPosteriorCovariance)));
  172.         } catch (java.lang.Exception e) {
  173.             e.printStackTrace();
  174.         }

  175.         return null;
  176.     }

  177.     /**
  178.      * Generate the Combined R^1 Multivariate Normal Distribution from the SPVD and the Named Projections
  179.      *
  180.      * @param spvd The Scoping/Projection Distribution
  181.      * @param strProjection1 Name of Projection #1
  182.      * @param strProjection2 Name of Projection #2
  183.      * @param r1mnUnconditional The R^1 Multivariate Normal Unconditional Distribution
  184.      *
  185.      * @return The Combined R^1 Multivariate Normal Distribution
  186.      */

  187.     public static final org.drip.measure.bayesian.R1MultivariateConvolutionMetrics GenerateComposite (
  188.         final org.drip.measure.bayesian.ScopingProjectionVariateDistribution spvd,
  189.         final java.lang.String strProjection1,
  190.         final java.lang.String strProjection2,
  191.         final org.drip.measure.gaussian.R1MultivariateNormal r1mnUnconditional)
  192.     {
  193.         return null == spvd ? null : GenerateComposite (spvd.scopingDistribution().meta(),
  194.             spvd.projectionDistributionLoading (strProjection1), spvd.projectionDistributionLoading
  195.                 (strProjection2), r1mnUnconditional);
  196.     }

  197.     /**
  198.      * Generate the Combined R^1 Multivariate Normal Distribution from the SPVD, the NATIVE Projection, and
  199.      *  the Named Projection
  200.      *
  201.      * @param spvd The Scoping/Projection Distribution
  202.      * @param strProjection Name of Projection
  203.      * @param r1mnUnconditional The R^1 Multivariate Normal Unconditional Distribution
  204.      *
  205.      * @return The Combined R^1 Multivariate Normal Distribution
  206.      */

  207.     public static final org.drip.measure.bayesian.R1MultivariateConvolutionMetrics GenerateComposite (
  208.         final org.drip.measure.bayesian.ScopingProjectionVariateDistribution spvd,
  209.         final java.lang.String strProjection,
  210.         final org.drip.measure.gaussian.R1MultivariateNormal r1mnUnconditional)
  211.     {
  212.         if (null == spvd) return null;

  213.         org.drip.measure.continuous.R1Multivariate r1m = spvd.scopingDistribution();

  214.         if (!(r1m instanceof org.drip.measure.gaussian.R1MultivariateNormal)) return null;

  215.         org.drip.measure.gaussian.R1MultivariateNormal r1mnScoping =
  216.             (org.drip.measure.gaussian.R1MultivariateNormal) r1m;

  217.         return GenerateComposite (r1mnScoping.meta(), spvd.projectionDistributionLoading ("NATIVE"),
  218.             spvd.projectionDistributionLoading (strProjection), r1mnUnconditional);
  219.     }

  220.     /**
  221.      * Generate the Projection Space Scoping Mean
  222.      *
  223.      * @param spvd The Scoping/Projection Distribution
  224.      * @param strProjection Name of Projection
  225.      *
  226.      * @return The Projection Space Scoping Mean
  227.      */

  228.     public static final double[] ProjectionSpaceScopingMean (
  229.         final org.drip.measure.bayesian.ScopingProjectionVariateDistribution spvd,
  230.         final java.lang.String strProjection)
  231.     {
  232.         if (null == spvd) return null;

  233.         org.drip.measure.bayesian.ProjectionDistributionLoading pdl = spvd.projectionDistributionLoading
  234.             (strProjection);

  235.         return null == pdl ? null : org.drip.numerical.linearalgebra.Matrix.Product (pdl.scopingLoading(),
  236.             spvd.scopingDistribution().mean());
  237.     }

  238.     /**
  239.      * Generate the Projection Space Projection-Scoping Mean Differential
  240.      *
  241.      * @param spvd The Scoping/Projection Distribution
  242.      * @param strProjection Name of Projection
  243.      *
  244.      * @return The Projection Space Projection-Scoping Mean Differential
  245.      */

  246.     public static final double[] ProjectionSpaceScopingDifferential (
  247.         final org.drip.measure.bayesian.ScopingProjectionVariateDistribution spvd,
  248.         final java.lang.String strProjection)
  249.     {
  250.         if (null == spvd) return null;

  251.         org.drip.measure.bayesian.ProjectionDistributionLoading pdl = spvd.projectionDistributionLoading
  252.             (strProjection);

  253.         if (null == pdl) return null;

  254.         double[] adblProjectionSpaceScopingMean = org.drip.numerical.linearalgebra.Matrix.Product
  255.             (pdl.scopingLoading(), spvd.scopingDistribution().mean());

  256.         if (null == adblProjectionSpaceScopingMean) return null;

  257.         int iNumProjection = adblProjectionSpaceScopingMean.length;
  258.         double[] adblProjectionSpaceScopingDifferential = new double[iNumProjection];

  259.         double[] adblProjectionMean = pdl.distribution().mean();

  260.         for (int i = 0; i < iNumProjection; ++i)
  261.             adblProjectionSpaceScopingDifferential[i] = adblProjectionMean[i] -
  262.                 adblProjectionSpaceScopingMean[i];

  263.         return adblProjectionSpaceScopingDifferential;
  264.     }

  265.     /**
  266.      * Generate the Projection Space Scoping Co-variance
  267.      *
  268.      * @param spvd The Scoping/Projection Distribution
  269.      * @param strProjection Name of Projection
  270.      *
  271.      * @return The Projection Space Scoping Co-variance
  272.      */

  273.     public static final org.drip.measure.gaussian.Covariance ProjectionSpaceScopingCovariance (
  274.         final org.drip.measure.bayesian.ScopingProjectionVariateDistribution spvd,
  275.         final java.lang.String strProjection)
  276.     {
  277.         if (null == spvd) return null;

  278.         org.drip.measure.continuous.R1Multivariate r1mScoping = spvd.scopingDistribution();

  279.         if (!(r1mScoping instanceof org.drip.measure.gaussian.R1MultivariateNormal)) return null;

  280.         org.drip.measure.gaussian.R1MultivariateNormal r1mnScoping =
  281.             (org.drip.measure.gaussian.R1MultivariateNormal) r1mScoping;

  282.         org.drip.measure.bayesian.ProjectionDistributionLoading pdl = spvd.projectionDistributionLoading
  283.             (strProjection);

  284.         if (null == pdl) return null;

  285.         double[][] aadblScopingLoading = pdl.scopingLoading();

  286.         try {
  287.             return new org.drip.measure.gaussian.Covariance (org.drip.numerical.linearalgebra.Matrix.Product
  288.                 (aadblScopingLoading, org.drip.numerical.linearalgebra.Matrix.Product
  289.                     (r1mnScoping.covariance().covarianceMatrix(),
  290.                         org.drip.numerical.linearalgebra.Matrix.Transpose (aadblScopingLoading))));
  291.         } catch (java.lang.Exception e) {
  292.             e.printStackTrace();
  293.         }

  294.         return null;
  295.     }

  296.     /**
  297.      * Compute the Shadow of the Scoping on Projection Transpose
  298.      *
  299.      * @param spvd The Scoping/Projection Distribution
  300.      * @param strProjection Name of Projection
  301.      *
  302.      * @return The Shadow of the Scoping on Projection Transpose
  303.      */

  304.     public static final double[][] ShadowScopingProjectionTranspose (
  305.         final org.drip.measure.bayesian.ScopingProjectionVariateDistribution spvd,
  306.         final java.lang.String strProjection)
  307.     {
  308.         if (null == spvd) return null;

  309.         org.drip.measure.continuous.R1Multivariate r1mScoping = spvd.scopingDistribution();

  310.         if (!(r1mScoping instanceof org.drip.measure.gaussian.R1MultivariateNormal)) return null;

  311.         org.drip.measure.bayesian.ProjectionDistributionLoading pdl = spvd.projectionDistributionLoading
  312.             (strProjection);

  313.         return null == pdl ? null : org.drip.numerical.linearalgebra.Matrix.Product
  314.             (((org.drip.measure.gaussian.R1MultivariateNormal) r1mScoping).covariance().covarianceMatrix(),
  315.                 org.drip.numerical.linearalgebra.Matrix.Transpose (pdl.scopingLoading()));
  316.     }

  317.     /**
  318.      * Compute the Shadow of the Scoping on Projection
  319.      *
  320.      * @param spvd The Scoping/Projection Distribution
  321.      * @param strProjection Name of Projection
  322.      *
  323.      * @return The Shadow of the Scoping on Projection
  324.      */

  325.     public static final double[][] ShadowScopingProjection (
  326.         final org.drip.measure.bayesian.ScopingProjectionVariateDistribution spvd,
  327.         final java.lang.String strProjection)
  328.     {
  329.         if (null == spvd) return null;

  330.         org.drip.measure.continuous.R1Multivariate r1mScoping = spvd.scopingDistribution();

  331.         org.drip.measure.bayesian.ProjectionDistributionLoading pdl = spvd.projectionDistributionLoading
  332.             (strProjection);

  333.         return !(r1mScoping instanceof org.drip.measure.gaussian.R1MultivariateNormal) || null == pdl ? null
  334.             : org.drip.numerical.linearalgebra.Matrix.Product (pdl.scopingLoading(),
  335.                 ((org.drip.measure.gaussian.R1MultivariateNormal)
  336.                     r1mScoping).covariance().covarianceMatrix());
  337.     }

  338.     /**
  339.      * Compute the Projection Precision Mean Dot Product Array
  340.      *
  341.      * @param spvd The Scoping/Projection Distribution
  342.      * @param strProjection Name of Projection
  343.      *
  344.      * @return The Projection Precision Mean Dot Product Array
  345.      */

  346.     public static final double[] ProjectionPrecisionMeanProduct (
  347.         final org.drip.measure.bayesian.ScopingProjectionVariateDistribution spvd,
  348.         final java.lang.String strProjection)
  349.     {
  350.         if (null == spvd) return null;

  351.         org.drip.measure.bayesian.ProjectionDistributionLoading pdl = spvd.projectionDistributionLoading
  352.             (strProjection);

  353.         if (null == pdl) return null;

  354.         org.drip.measure.continuous.R1Multivariate r1mProjection = pdl.distribution();

  355.         return !(r1mProjection instanceof org.drip.measure.gaussian.R1MultivariateNormal) ? null :
  356.             org.drip.numerical.linearalgebra.Matrix.Product (((org.drip.measure.gaussian.R1MultivariateNormal)
  357.                 r1mProjection).covariance().precisionMatrix(), r1mProjection.mean());
  358.     }

  359.     /**
  360.      * Compute the Projection Induced Scoping Mean Deviation
  361.      *
  362.      * @param spvd The Scoping/Projection Distribution
  363.      * @param strProjection Name of Projection
  364.      *
  365.      * @return The Projection Induced Scoping Mean Deviation
  366.      */

  367.     public static final double[] ProjectionInducedScopingDeviation (
  368.         final org.drip.measure.bayesian.ScopingProjectionVariateDistribution spvd,
  369.         final java.lang.String strProjection)
  370.     {
  371.         if (null == spvd) return null;

  372.         org.drip.measure.continuous.R1Multivariate r1mScoping = spvd.scopingDistribution();

  373.         if (!(r1mScoping instanceof org.drip.measure.gaussian.R1MultivariateNormal)) return null;

  374.         org.drip.measure.gaussian.R1MultivariateNormal r1mnScoping =
  375.             (org.drip.measure.gaussian.R1MultivariateNormal) r1mScoping;

  376.         org.drip.measure.bayesian.ProjectionDistributionLoading pdl = spvd.projectionDistributionLoading
  377.             (strProjection);

  378.         if (null == pdl) return null;

  379.         double[][] aadblScopingLoading = pdl.scopingLoading();

  380.         double[][] aadblProjectionScopingShadow = org.drip.numerical.linearalgebra.Matrix.Product
  381.             (r1mnScoping.covariance().covarianceMatrix(), org.drip.numerical.linearalgebra.Matrix.Transpose
  382.                 (aadblScopingLoading));

  383.         double[] adblProjectionSpaceScopingMean = org.drip.numerical.linearalgebra.Matrix.Product
  384.             (aadblScopingLoading, r1mScoping.mean());

  385.         if (null == adblProjectionSpaceScopingMean) return null;

  386.         int iNumProjection = adblProjectionSpaceScopingMean.length;
  387.         double[] adblProjectionSpaceScopingDifferential = new double[iNumProjection];

  388.         double[] adblProjectionMean = pdl.distribution().mean();

  389.         for (int i = 0; i < iNumProjection; ++i)
  390.             adblProjectionSpaceScopingDifferential[i] = adblProjectionMean[i] -
  391.                 adblProjectionSpaceScopingMean[i];

  392.         return org.drip.numerical.linearalgebra.Matrix.Product (aadblProjectionScopingShadow,
  393.             org.drip.numerical.linearalgebra.Matrix.Product
  394.                 (org.drip.numerical.linearalgebra.Matrix.InvertUsingGaussianElimination
  395.                     (org.drip.numerical.linearalgebra.Matrix.Product (aadblScopingLoading,
  396.                         aadblProjectionScopingShadow)), adblProjectionSpaceScopingDifferential));
  397.     }

  398.     /**
  399.      * Compute the Projection Induced Scoping Deviation Adjusted Mean
  400.      *
  401.      * @param spvd The Scoping/Projection Distribution
  402.      * @param strProjection Name of Projection
  403.      *
  404.      * @return The Projection Induced Scoping Deviation Adjusted Mean
  405.      */

  406.     public static final double[] ProjectionInducedScopingMean (
  407.         final org.drip.measure.bayesian.ScopingProjectionVariateDistribution spvd,
  408.         final java.lang.String strProjection)
  409.     {
  410.         if (null == spvd) return null;

  411.         org.drip.measure.continuous.R1Multivariate r1mScoping = spvd.scopingDistribution();

  412.         double[] adblScopingMean = r1mScoping.mean();

  413.         int iNumScopingVariate = r1mScoping.meta().numVariable();

  414.         if (!(r1mScoping instanceof org.drip.measure.gaussian.R1MultivariateNormal)) return null;

  415.         org.drip.measure.gaussian.R1MultivariateNormal r1mnScoping =
  416.             (org.drip.measure.gaussian.R1MultivariateNormal) r1mScoping;

  417.         org.drip.measure.bayesian.ProjectionDistributionLoading pdl = spvd.projectionDistributionLoading
  418.             (strProjection);

  419.         if (null == pdl) return null;

  420.         double[][] aadblScopingLoading = pdl.scopingLoading();

  421.         double[][] aadblProjectionScopingShadow = org.drip.numerical.linearalgebra.Matrix.Product
  422.             (r1mnScoping.covariance().covarianceMatrix(), org.drip.numerical.linearalgebra.Matrix.Transpose
  423.                 (aadblScopingLoading));

  424.         double[] adblProjectionSpaceScopingMean = org.drip.numerical.linearalgebra.Matrix.Product
  425.             (aadblScopingLoading, adblScopingMean);

  426.         if (null == adblProjectionSpaceScopingMean) return null;

  427.         int iNumProjection = adblProjectionSpaceScopingMean.length;
  428.         double[] adblProjectionInducedScopingMean = new double[iNumScopingVariate];
  429.         double[] adblProjectionSpaceScopingDifferential = new double[iNumProjection];

  430.         double[] adblProjectionMean = pdl.distribution().mean();

  431.         for (int i = 0; i < iNumProjection; ++i)
  432.             adblProjectionSpaceScopingDifferential[i] = adblProjectionMean[i] -
  433.                 adblProjectionSpaceScopingMean[i];

  434.         double[] adblProjectionInducedScopingDeviation = org.drip.numerical.linearalgebra.Matrix.Product
  435.             (aadblProjectionScopingShadow, org.drip.numerical.linearalgebra.Matrix.Product
  436.                 (org.drip.numerical.linearalgebra.Matrix.InvertUsingGaussianElimination
  437.                     (org.drip.numerical.linearalgebra.Matrix.Product (aadblScopingLoading,
  438.                         aadblProjectionScopingShadow)), adblProjectionSpaceScopingDifferential));

  439.         if (null == adblProjectionInducedScopingDeviation) return null;

  440.         for (int i = 0; i < iNumScopingVariate; ++i)
  441.             adblProjectionInducedScopingMean[i] = adblScopingMean[i] +
  442.                 adblProjectionInducedScopingDeviation[i];

  443.         return adblProjectionInducedScopingMean;
  444.     }

  445.     /**
  446.      * Compute the Asset Space Projection Co-variance
  447.      *
  448.      * @param spvd The Scoping/Projection Distribution
  449.      * @param strProjection Name of Projection
  450.      *
  451.      * @return The Asset Space Projection Co-variance
  452.      */

  453.     public static final double[][] AssetSpaceProjectionCovariance (
  454.         final org.drip.measure.bayesian.ScopingProjectionVariateDistribution spvd,
  455.         final java.lang.String strProjection)
  456.     {
  457.         if (null == spvd) return null;

  458.         org.drip.measure.bayesian.ProjectionDistributionLoading pdl = spvd.projectionDistributionLoading
  459.             (strProjection);

  460.         if (null == pdl) return null;

  461.         org.drip.measure.continuous.R1Multivariate r1mProjection = pdl.distribution();

  462.         if (!(r1mProjection instanceof org.drip.measure.gaussian.R1MultivariateNormal)) return null;

  463.         double[][] aadblScopingLoading = pdl.scopingLoading();

  464.         return org.drip.numerical.linearalgebra.Matrix.Product (org.drip.numerical.linearalgebra.Matrix.Transpose
  465.             (aadblScopingLoading), org.drip.numerical.linearalgebra.Matrix.Product
  466.                 (((org.drip.measure.gaussian.R1MultivariateNormal)
  467.                     r1mProjection).covariance().covarianceMatrix(), aadblScopingLoading));
  468.     }

  469.     /**
  470.      * Compute the Projection Space Asset Co-variance
  471.      *
  472.      * @param spvd The Scoping/Projection Distribution
  473.      * @param strProjection Name of Projection
  474.      *
  475.      * @return The Projection Space Asset Co-variance
  476.      */

  477.     public static final double[][] ProjectionSpaceAssetCovariance (
  478.         final org.drip.measure.bayesian.ScopingProjectionVariateDistribution spvd,
  479.         final java.lang.String strProjection)
  480.     {
  481.         if (null == spvd) return null;

  482.         org.drip.measure.continuous.R1Multivariate r1mScoping = spvd.scopingDistribution();

  483.         if (!(r1mScoping instanceof org.drip.measure.gaussian.R1MultivariateNormal)) return null;

  484.         org.drip.measure.bayesian.ProjectionDistributionLoading pdl = spvd.projectionDistributionLoading
  485.             (strProjection);

  486.         if (null == pdl) return null;

  487.         double[][] aadblScopingLoading = pdl.scopingLoading();

  488.         return org.drip.numerical.linearalgebra.Matrix.Product (aadblScopingLoading,
  489.             org.drip.numerical.linearalgebra.Matrix.Product (((org.drip.measure.gaussian.R1MultivariateNormal)
  490.                 r1mScoping).covariance().covarianceMatrix(), org.drip.numerical.linearalgebra.Matrix.Transpose
  491.                     (aadblScopingLoading)));
  492.     }

  493.     /**
  494.      * Compute the Projection Induced Scoping Deviation Adjusted Mean
  495.      *
  496.      * @param spvd The Scoping/Projection Distribution
  497.      * @param strProjection Name of Projection
  498.      * @param r1mnUnconditional The Unconditional Distribution
  499.      *
  500.      * @return The Projection Induced Scoping Deviation Adjusted Mean
  501.      */

  502.     public static final org.drip.measure.gaussian.R1MultivariateNormal ProjectionInducedScopingDistribution (
  503.         final org.drip.measure.bayesian.ScopingProjectionVariateDistribution spvd,
  504.         final java.lang.String strProjection,
  505.         final org.drip.measure.gaussian.R1MultivariateNormal r1mnUnconditional)
  506.     {
  507.         if (null == spvd || null == r1mnUnconditional) return null;

  508.         org.drip.measure.continuous.R1Multivariate r1mScoping = spvd.scopingDistribution();

  509.         double[] adblScopingMean = r1mScoping.mean();

  510.         int iNumScopingVariate = r1mScoping.meta().numVariable();

  511.         if (!(r1mScoping instanceof org.drip.measure.gaussian.R1MultivariateNormal)) return null;

  512.         org.drip.measure.gaussian.R1MultivariateNormal r1mnScoping =
  513.             (org.drip.measure.gaussian.R1MultivariateNormal) r1mScoping;

  514.         org.drip.measure.bayesian.ProjectionDistributionLoading pdl = spvd.projectionDistributionLoading
  515.             (strProjection);

  516.         if (null == pdl) return null;

  517.         double[][] aadblScopingLoading = pdl.scopingLoading();

  518.         double[][] aadblProjectionScopingShadow = org.drip.numerical.linearalgebra.Matrix.Product
  519.             (r1mnScoping.covariance().covarianceMatrix(), org.drip.numerical.linearalgebra.Matrix.Transpose
  520.                 (aadblScopingLoading));

  521.         double[] adblProjectionSpaceScopingMean = org.drip.numerical.linearalgebra.Matrix.Product
  522.             (aadblScopingLoading, adblScopingMean);

  523.         if (null == adblProjectionSpaceScopingMean) return null;

  524.         int iNumProjection = adblProjectionSpaceScopingMean.length;
  525.         double[] adblProjectionInducedScopingMean = new double[iNumScopingVariate];
  526.         double[] adblProjectionSpaceScopingDifferential = new double[iNumProjection];

  527.         double[] adblProjectionMean = pdl.distribution().mean();

  528.         for (int i = 0; i < iNumProjection; ++i)
  529.             adblProjectionSpaceScopingDifferential[i] = adblProjectionMean[i] -
  530.                 adblProjectionSpaceScopingMean[i];

  531.         double[] adblProjectionInducedScopingDeviation = org.drip.numerical.linearalgebra.Matrix.Product
  532.             (aadblProjectionScopingShadow, org.drip.numerical.linearalgebra.Matrix.Product
  533.                 (org.drip.numerical.linearalgebra.Matrix.InvertUsingGaussianElimination
  534.                     (org.drip.numerical.linearalgebra.Matrix.Product (aadblScopingLoading,
  535.                         aadblProjectionScopingShadow)), adblProjectionSpaceScopingDifferential));

  536.         if (null == adblProjectionInducedScopingDeviation) return null;

  537.         for (int i = 0; i < iNumScopingVariate; ++i)
  538.             adblProjectionInducedScopingMean[i] = adblScopingMean[i] +
  539.                 adblProjectionInducedScopingDeviation[i];

  540.         org.drip.measure.continuous.R1Multivariate r1mProjection = pdl.distribution();

  541.         if (!(r1mProjection instanceof org.drip.measure.gaussian.R1MultivariateNormal)) return null;

  542.         try {
  543.             return new org.drip.measure.gaussian.R1MultivariateNormal (r1mnUnconditional.meta(),
  544.                 adblProjectionInducedScopingMean, new org.drip.measure.gaussian.Covariance
  545.                     (org.drip.numerical.linearalgebra.Matrix.Product
  546.                         (org.drip.numerical.linearalgebra.Matrix.Transpose (aadblScopingLoading),
  547.                             org.drip.numerical.linearalgebra.Matrix.Product
  548.                                 (((org.drip.measure.gaussian.R1MultivariateNormal)
  549.                                     r1mProjection).covariance().covarianceMatrix(), aadblScopingLoading))));
  550.         } catch (java.lang.Exception e) {
  551.             e.printStackTrace();
  552.         }

  553.         return null;
  554.     }
  555. }