R1Central.java
- package org.drip.measure.chisquare;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2020 Lakshmi Krishnamurthy
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
- * asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
- * analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
- * equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
- * numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
- * and computational support.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three modules:
- *
- * - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
- *
- * DROP Product Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Loan Analytics
- * - Transaction Cost Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Asset Liability Management Analytics
- * - Capital Estimation Analytics
- * - Exposure Analytics
- * - Margin Analytics
- * - XVA Analytics
- *
- * DROP Computational Core implements libraries for the following:
- * - Algorithm Support
- * - Computation Support
- * - Function Analysis
- * - Model Validation
- * - Numerical Analysis
- * - Numerical Optimizer
- * - Spline Builder
- * - Statistical Learning
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>R1Central</i> implements the Probability Density Function for the R<sup>1</sup> Central Chi-Square
- * Distribution. The References are:
- *
- * <br><br>
- * <ul>
- * <li>
- * Abramowitz, M., and I. A. Stegun (2007): <i>Handbook of Mathematics Functions</i> <b>Dover Book
- * on Mathematics</b>
- * </li>
- * <li>
- * Backstrom, T., and J. Fischer (2018): Fast Randomization for Distributed Low Bit-rate Coding of
- * Speech and Audio <i>IEEE/ACM Transactions on Audio, Speech, and Language Processing</i> <b>26
- * (1)</b> 19-30
- * </li>
- * <li>
- * Chi-Squared Distribution (2019): Chi-Squared Function
- * https://en.wikipedia.org/wiki/Chi-squared_distribution
- * </li>
- * <li>
- * Johnson, N. L., S. Kotz, and N. Balakrishnan (1994): <i>Continuous Univariate Distributions
- * 2<sup>nd</sup> Edition</i> <b>John Wiley and Sons</b>
- * </li>
- * <li>
- * National Institute of Standards and Technology (2019): Chi-Squared Distribution
- * https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm
- * </li>
- * </ul>
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalAnalysisLibrary.md">Numerical Analysis Library</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/README.md">R<sup>d</sup> Continuous/Discrete Probability Measures</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/chisquare/README.md">Chi-Square Distribution Implementation/Properties</a></li>
- * </ul>
- *
- * @author Lakshmi Krishnamurthy
- */
- public class R1Central extends org.drip.measure.continuous.R1Univariate
- {
- private double _degreesOfFreedom = -1;
- private double _cdfScaler = java.lang.Double.NaN;
- private double _normalizer = java.lang.Double.NaN;
- private org.drip.function.definition.R1ToR1 _gammaEstimator = null;
- private org.drip.function.definition.R1ToR1 _digammaEstimator = null;
- private org.drip.function.definition.R2ToR1 _lowerIncompleteGammaEstimator = null;
- /**
- * Generate a Consolidated Chi-squared Distribution from Independent Component Distributions
- *
- * @param chiSquaredDistributionArray Independent Component Distribution Array
- *
- * @return Consolidated Chi-squared Distribution
- */
- public static final R1Central FromIndependentChiSquared (
- final org.drip.measure.chisquare.R1Central[] chiSquaredDistributionArray)
- {
- if (null == chiSquaredDistributionArray || 0 == chiSquaredDistributionArray.length)
- {
- return null;
- }
- double degreesOfFreedom = 0;
- for (org.drip.measure.chisquare.R1Central chiSquaredDistribution :
- chiSquaredDistributionArray)
- {
- if (null == chiSquaredDistribution)
- {
- return null;
- }
- degreesOfFreedom = degreesOfFreedom + chiSquaredDistribution.degreesOfFreedom();
- }
- try
- {
- return new R1Central (
- degreesOfFreedom,
- chiSquaredDistributionArray[0].gammaEstimator(),
- chiSquaredDistributionArray[0].digammaEstimator(),
- chiSquaredDistributionArray[0].lowerIncompleteGammaEstimator()
- );
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * R1Central Constructor
- *
- * @param degreesOfFreedom Degrees of Freedom
- * @param gammaEstimator Gamma Estimator
- * @param digammaEstimator Digamma Estimator
- * @param lowerIncompleteGammaEstimator Lower Incomplete Gamma Estimator
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public R1Central (
- final double degreesOfFreedom,
- final org.drip.function.definition.R1ToR1 gammaEstimator,
- final org.drip.function.definition.R1ToR1 digammaEstimator,
- final org.drip.function.definition.R2ToR1 lowerIncompleteGammaEstimator)
- throws java.lang.Exception
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (
- _degreesOfFreedom = degreesOfFreedom
- ) || 0. >= _degreesOfFreedom ||
- null == (_gammaEstimator = gammaEstimator) ||
- null == (_digammaEstimator = digammaEstimator) ||
- null == (_lowerIncompleteGammaEstimator = lowerIncompleteGammaEstimator))
- {
- throw new java.lang.Exception ("R1Central Constructor => Invalid Inputs");
- }
- double halfDOF = 0.5 * _degreesOfFreedom;
- _normalizer = (_cdfScaler = 1. / _gammaEstimator.evaluate (halfDOF)) * java.lang.Math.pow (
- 2.,
- -1. * halfDOF
- );
- }
- /**
- * Retrieve the Degrees of Freedom
- *
- * @return The Degrees of Freedom
- */
- public double degreesOfFreedom()
- {
- return _degreesOfFreedom;
- }
- /**
- * Retrieve the Gamma Estimator
- *
- * @return Gamma Estimator
- */
- public org.drip.function.definition.R1ToR1 gammaEstimator()
- {
- return _gammaEstimator;
- }
- /**
- * Retrieve the Digamma Estimator
- *
- * @return Digamma Estimator
- */
- public org.drip.function.definition.R1ToR1 digammaEstimator()
- {
- return _digammaEstimator;
- }
- /**
- * Retrieve the Lower Incomplete Gamma Estimator
- *
- * @return Lower Incomplete Gamma Estimator
- */
- public org.drip.function.definition.R2ToR1 lowerIncompleteGammaEstimator()
- {
- return _lowerIncompleteGammaEstimator;
- }
- @Override public double[] support()
- {
- return new double[]
- {
- 0.,
- java.lang.Double.POSITIVE_INFINITY
- };
- }
- @Override public double density (
- final double t)
- throws java.lang.Exception
- {
- if (!supported (t))
- {
- throw new java.lang.Exception ("R1Central::density => Variate not in Range");
- }
- return _normalizer * java.lang.Math.pow (
- t,
- 0.5 * _degreesOfFreedom - 1.
- ) * java.lang.Math.exp (-0.5 * t);
- }
- @Override public double cumulative (
- final double t)
- throws java.lang.Exception
- {
- if (!supported (t))
- {
- throw new java.lang.Exception ("R1Central::cumulative => Invalid Inputs");
- }
- return _cdfScaler * _lowerIncompleteGammaEstimator.evaluate (
- 0.5 * _degreesOfFreedom,
- 0.5 * t
- );
- }
- @Override public double mean()
- throws java.lang.Exception
- {
- return _degreesOfFreedom;
- }
- @Override public double median()
- throws java.lang.Exception
- {
- double oneMinus_twoOver_9dof__ = 1. - (2. / (9. * _degreesOfFreedom));
- return _degreesOfFreedom * oneMinus_twoOver_9dof__ * oneMinus_twoOver_9dof__ *
- oneMinus_twoOver_9dof__;
- }
- @Override public double mode()
- throws java.lang.Exception
- {
- return java.lang.Math.max (
- _degreesOfFreedom - 2.,
- 0.
- );
- }
- @Override public double variance()
- throws java.lang.Exception
- {
- return 2. * _degreesOfFreedom;
- }
- @Override public double skewness()
- throws java.lang.Exception
- {
- return java.lang.Math.sqrt (8. / _degreesOfFreedom);
- }
- @Override public double excessKurtosis()
- throws java.lang.Exception
- {
- return 12. / _degreesOfFreedom;
- }
- @Override public double differentialEntropy()
- throws java.lang.Exception
- {
- double halfDOF = 0.5 * _degreesOfFreedom;
- return halfDOF + java.lang.Math.log (2. * _gammaEstimator.evaluate (halfDOF)) +
- (1. - halfDOF) * _digammaEstimator.evaluate (halfDOF);
- }
- @Override public org.drip.function.definition.R1ToR1 momentGeneratingFunction()
- {
- return new org.drip.function.definition.R1ToR1 (null)
- {
- @Override public double evaluate (
- final double t)
- throws java.lang.Exception
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (t) || t > 0.5)
- {
- throw new java.lang.Exception
- ("R1Central::momentGeneratingFunction::evaluate => Invalid Input");
- }
- return java.lang.Math.pow (
- 1. - 2. * t,
- -0.5 * _degreesOfFreedom
- );
- }
- };
- }
- @Override public org.drip.function.definition.R1ToR1 probabilityGeneratingFunction()
- {
- return new org.drip.function.definition.R1ToR1 (null)
- {
- @Override public double evaluate (
- final double t)
- throws java.lang.Exception
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (t) ||
- t <= 0. || t > java.lang.Math.sqrt (java.lang.Math.E))
- {
- throw new java.lang.Exception
- ("R1Central::probabilityGeneratingFunction::evaluate => Invalid Input");
- }
- return java.lang.Math.pow (
- 1. - 2. * java.lang.Math.log (t),
- -0.5 * _degreesOfFreedom
- );
- }
- };
- }
- @Override public double random()
- throws java.lang.Exception
- {
- double sumOfStandardNormalSquares = 0.;
- for (int drawIndex = 0; drawIndex < _degreesOfFreedom; ++drawIndex)
- {
- double randomStandardNormal = org.drip.measure.gaussian.NormalQuadrature.InverseCDF
- (java.lang.Math.random());
- sumOfStandardNormalSquares = sumOfStandardNormalSquares +
- randomStandardNormal * randomStandardNormal;
- }
- return sumOfStandardNormalSquares;
- }
- /**
- * Retrieve the Normalizer
- *
- * @return Normalizer
- */
- public double normalizer()
- {
- return _normalizer;
- }
- /**
- * Retrieve the CDF Scaler
- *
- * @return CDF Scaler
- */
- public double cdfScaler()
- {
- return _cdfScaler;
- }
- /**
- * Compute the Chernoff Upper Bound
- *
- * @param x A
- *
- * @return The Chernoff Upper Bound
- *
- * @throws java.lang.Exception Thrown if the Chernoff Upper Bound cannot be calculated
- */
- public double chernoffBound (
- final double x)
- throws java.lang.Exception
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (x) || 0. >= x)
- {
- throw new java.lang.Exception ("R1Central::chernoffBound => Invalid Inputs");
- }
- double z = x / _degreesOfFreedom;
- if (1. == z)
- {
- throw new java.lang.Exception ("R1Central::chernoffBound => Invalid Inputs");
- }
- double _zExponent_OneMinusZ__powerHalfDegreesOfFreedom = java.lang.Math.pow (
- z * java.lang.Math.exp (1. - z),
- 0.5 * _degreesOfFreedom
- );
- return 1. > z ? _zExponent_OneMinusZ__powerHalfDegreesOfFreedom : 1. -
- _zExponent_OneMinusZ__powerHalfDegreesOfFreedom;
- }
- /**
- * Compute the Non-central Moment about Zero
- *
- * @param m Non-central Moment Index
- *
- * @return The Non-central Moment about Zero
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public double nonCentralMoment (
- final int m)
- throws java.lang.Exception
- {
- if (0 > m)
- {
- throw new java.lang.Exception ("R1Central::nonCentralMoment => Invalid Inputs");
- }
- double halfDOF = 0.5 * _degreesOfFreedom;
- return java.lang.Math.pow (
- 2.,
- m
- ) * _gammaEstimator.evaluate (m + halfDOF) / _gammaEstimator.evaluate (halfDOF);
- }
- /**
- * Compute the Cumulant
- *
- * @param n Cumulant Index
- *
- * @return The Cumulant
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public double cumulant (
- final int n)
- throws java.lang.Exception
- {
- if (0 > n)
- {
- throw new java.lang.Exception ("R1Central::cumulant => Invalid Inputs");
- }
- return _degreesOfFreedom * java.lang.Math.pow (
- 2.,
- n - 1.
- ) * _gammaEstimator.evaluate (n);
- }
- /**
- * Retrieve the Central Limit Theorem Equivalent Normal Distribution Proxy
- *
- * @return The Central Limit Theorem Equivalent Normal Distribution Proxy
- */
- public org.drip.measure.gaussian.R1UnivariateNormal cltProxy()
- {
- try
- {
- return new org.drip.measure.gaussian.R1UnivariateNormal (
- _degreesOfFreedom,
- 2. * _degreesOfFreedom
- );
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Indicate if the Current Distribution is a Valid Proxy as a CLT
- *
- * @return TRUE - The Current Distribution is a Valid Proxy as a CLT
- */
- public boolean validCLTProxy()
- {
- return 50. <= _degreesOfFreedom;
- }
- /**
- * Generate a Gamma-distribution off of the Scaled Chi-Square Distribution
- *
- * @param scale The Scale
- *
- * @return The Gamma Distribution
- */
- public org.drip.measure.gamma.R1ShapeScaleDistribution gammaDistribution (
- final double scale)
- {
- try
- {
- return new org.drip.measure.gamma.R1ShapeScaleDistribution (
- new org.drip.measure.gamma.ShapeScaleParameters (
- 0.5 * _degreesOfFreedom,
- 2. * scale
- ),
- _gammaEstimator,
- _digammaEstimator,
- _lowerIncompleteGammaEstimator
- );
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Generate Logarithm Proxy Based Random Number - Proxy to Univariate Normal Distribution
- *
- * @return Logarithm Proxy Based Random Number - Proxy to Univariate Normal Distribution
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public double randomLogProxy()
- throws java.lang.Exception
- {
- return java.lang.Math.log (_degreesOfFreedom);
- }
- /**
- * Generate CLT Proxy Based Random Number - Proxy to Univariate Normal Distribution
- *
- * @return CLT Proxy Based Random Number - Proxy to Univariate Normal Distribution
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public double randomCLTProxy()
- throws java.lang.Exception
- {
- return (random() - _degreesOfFreedom) / java.lang.Math.sqrt (2. * _degreesOfFreedom);
- }
- /**
- * Generate Fisher Proxy Random Number - Proxy to Univariate Normal Distribution
- *
- * @return Fisher Proxy Random Number - Proxy to Univariate Normal Distribution
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public double randomFisherProxy()
- throws java.lang.Exception
- {
- return java.lang.Math.sqrt (2. * random());
- }
- /**
- * Generate Wilson-Hilferty Proxy Random Number - Proxy to Univariate Normal Distribution
- *
- * @return Wilson-Hilferty Proxy Random Number - Proxy to Univariate Normal Distribution
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public double randomWilsonHilferty()
- throws java.lang.Exception
- {
- return java.lang.Math.pow (
- random() / _degreesOfFreedom,
- 1. / 3.
- );
- }
- /**
- * Generate Gamma Distributed Random Number
- *
- * @param c The Scale Parameter
- *
- * @return Gamma Distributed Random Number
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public double randomGamma (
- final double c)
- throws java.lang.Exception
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (c) || 0. >= c)
- {
- throw new java.lang.Exception ("R1Central::randomGamma => Invalid Inputs");
- }
- return random() * c;
- }
- /**
- * Generate the Chi Distributed Random Number
- *
- * @return Chi Distributed Random Number
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public double randomChi()
- throws java.lang.Exception
- {
- return java.lang.Math.sqrt (random());
- }
- /**
- * Generate Exponential (0.5) Distributed Random Number
- *
- * @return Exponential (0.5) Distributed Random Number
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public double randomExponentialHalf()
- throws java.lang.Exception
- {
- if (2. != _degreesOfFreedom)
- {
- throw new java.lang.Exception ("R1Central::randomExponentialHalf => Invalid Inputs");
- }
- return random();
- }
- /**
- * Generate Rayleigh (1) Distributed Random Number
- *
- * @return Rayleigh (1) Distributed Random Number
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public double randomRayleigh1()
- throws java.lang.Exception
- {
- if (2. != _degreesOfFreedom)
- {
- throw new java.lang.Exception ("R1Central::randomRayleigh1 => Invalid Inputs");
- }
- return random();
- }
- /**
- * Generate Maxwell (1) Distributed Random Number
- *
- * @return Maxwell (1) Distributed Random Number
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public double randomMaxwell1()
- throws java.lang.Exception
- {
- if (3. != _degreesOfFreedom)
- {
- throw new java.lang.Exception ("R1Central::randomMaxwell1 => Invalid Inputs");
- }
- return random();
- }
- }