R1CentralFisherProxy.java
- package org.drip.measure.chisquare;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2020 Lakshmi Krishnamurthy
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
- * asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
- * analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
- * equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
- * numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
- * and computational support.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three modules:
- *
- * - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
- *
- * DROP Product Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Loan Analytics
- * - Transaction Cost Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Asset Liability Management Analytics
- * - Capital Estimation Analytics
- * - Exposure Analytics
- * - Margin Analytics
- * - XVA Analytics
- *
- * DROP Computational Core implements libraries for the following:
- * - Algorithm Support
- * - Computation Support
- * - Function Analysis
- * - Model Validation
- * - Numerical Analysis
- * - Numerical Optimizer
- * - Spline Builder
- * - Statistical Learning
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>R1CentralFisherProxy</i> implements the Univariate Normal Proxy Version using the Fisher Transformation
- * for the R<sup>1</sup> Chi-Square Distribution. The References are:
- *
- * <br><br>
- * <ul>
- * <li>
- * Abramowitz, M., and I. A. Stegun (2007): <i>Handbook of Mathematics Functions</i> <b>Dover Book
- * on Mathematics</b>
- * </li>
- * <li>
- * Backstrom, T., and J. Fischer (2018): Fast Randomization for Distributed Low Bit-rate Coding of
- * Speech and Audio <i>IEEE/ACM Transactions on Audio, Speech, and Language Processing</i> <b>26
- * (1)</b> 19-30
- * </li>
- * <li>
- * Chi-Squared Distribution (2019): Chi-Squared Function
- * https://en.wikipedia.org/wiki/Chi-squared_distribution
- * </li>
- * <li>
- * Johnson, N. L., S. Kotz, and N. Balakrishnan (1994): <i>Continuous Univariate Distributions
- * 2<sup>nd</sup> Edition</i> <b>John Wiley and Sons</b>
- * </li>
- * <li>
- * National Institute of Standards and Technology (2019): Chi-Squared Distribution
- * https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm
- * </li>
- * </ul>
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalAnalysisLibrary.md">Numerical Analysis Library</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/README.md">R<sup>d</sup> Continuous/Discrete Probability Measures</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/chisquare/README.md">Chi-Square Distribution Implementation/Properties</a></li>
- * </ul>
- *
- * @author Lakshmi Krishnamurthy
- */
- public class R1CentralFisherProxy extends org.drip.measure.continuous.R1Univariate
- {
- private int _degreesOfFreedom = -1;
- private org.drip.measure.gaussian.R1UnivariateNormal _r1UnivariateNormal = null;
- /**
- * R1CentralFisherProxy Constructor
- *
- * @param degreesOfFreedom Degrees of Freedom
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public R1CentralFisherProxy (
- final int degreesOfFreedom)
- throws java.lang.Exception
- {
- if (0 >= (_degreesOfFreedom = degreesOfFreedom))
- {
- throw new java.lang.Exception ("R1CentralFisherProxy Constructor => Invalid Inputs");
- }
- _r1UnivariateNormal = new org.drip.measure.gaussian.R1UnivariateNormal (
- java.lang.Math.sqrt (2. * _degreesOfFreedom - 1),
- 1.
- );
- }
- /**
- * Retrieve the Degrees of Freedom
- *
- * @return The Degrees of Freedom
- */
- public int degreesOfFreedom()
- {
- return _degreesOfFreedom;
- }
- /**
- * Retrieve the R^1 Univariate Normal
- *
- * @return The R^1 Univariate Normal
- */
- public org.drip.measure.gaussian.R1UnivariateNormal r1UnivariateNormal()
- {
- return _r1UnivariateNormal;
- }
- @Override public double[] support()
- {
- return new double[]
- {
- 0.,
- java.lang.Double.POSITIVE_INFINITY
- };
- }
- @Override public double density (
- final double t)
- throws java.lang.Exception
- {
- return _r1UnivariateNormal.density (t);
- }
- @Override public double cumulative (
- final double t)
- throws java.lang.Exception
- {
- return _r1UnivariateNormal.cumulative (t);
- }
- @Override public double mean()
- throws java.lang.Exception
- {
- return _r1UnivariateNormal.mean();
- }
- @Override public double median()
- throws java.lang.Exception
- {
- return _r1UnivariateNormal.median();
- }
- @Override public double mode()
- throws java.lang.Exception
- {
- return _r1UnivariateNormal.mode();
- }
- @Override public double variance()
- throws java.lang.Exception
- {
- return 1.;
- }
- @Override public double skewness()
- throws java.lang.Exception
- {
- return _r1UnivariateNormal.skewness();
- }
- @Override public double excessKurtosis()
- throws java.lang.Exception
- {
- return _r1UnivariateNormal.excessKurtosis();
- }
- @Override public double differentialEntropy()
- throws java.lang.Exception
- {
- return _r1UnivariateNormal.differentialEntropy();
- }
- @Override public org.drip.function.definition.R1ToR1 momentGeneratingFunction()
- {
- return _r1UnivariateNormal.momentGeneratingFunction();
- }
- @Override public org.drip.function.definition.R1ToR1 probabilityGeneratingFunction()
- {
- return _r1UnivariateNormal.probabilityGeneratingFunction();
- }
- @Override public double random()
- throws java.lang.Exception
- {
- double sumOfStandardNormalSquares = 0.;
- for (int drawIndex = 0; drawIndex < _degreesOfFreedom; ++drawIndex)
- {
- double randomStandardNormal = org.drip.measure.gaussian.NormalQuadrature.InverseCDF
- (java.lang.Math.random());
- sumOfStandardNormalSquares = sumOfStandardNormalSquares +
- randomStandardNormal * randomStandardNormal;
- }
- return java.lang.Math.sqrt (2. * sumOfStandardNormalSquares);
- }
- }