R1CentralWilsonHilferty.java
package org.drip.measure.chisquare;
/*
* -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*/
/*!
* Copyright (C) 2020 Lakshmi Krishnamurthy
* Copyright (C) 2019 Lakshmi Krishnamurthy
*
* This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
* asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
* analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
* equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
* numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
* and computational support.
*
* https://lakshmidrip.github.io/DROP/
*
* DROP is composed of three modules:
*
* - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
* - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
* - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
*
* DROP Product Core implements libraries for the following:
* - Fixed Income Analytics
* - Loan Analytics
* - Transaction Cost Analytics
*
* DROP Portfolio Core implements libraries for the following:
* - Asset Allocation Analytics
* - Asset Liability Management Analytics
* - Capital Estimation Analytics
* - Exposure Analytics
* - Margin Analytics
* - XVA Analytics
*
* DROP Computational Core implements libraries for the following:
* - Algorithm Support
* - Computation Support
* - Function Analysis
* - Model Validation
* - Numerical Analysis
* - Numerical Optimizer
* - Spline Builder
* - Statistical Learning
*
* Documentation for DROP is Spread Over:
*
* - Main => https://lakshmidrip.github.io/DROP/
* - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
* - GitHub => https://github.com/lakshmiDRIP/DROP
* - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
* - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
* - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
* - Release Versions => https://lakshmidrip.github.io/DROP/version.html
* - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
* - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
* - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
* - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
*
* You may obtain a copy of the License at
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* <i>R1CentralWilsonHilferty</i> implements the Normal Proxy Version for the R<sup>1</sup> Chi-Square
* Distribution using the Wilson-Hilferty Transfomation. The References are:
*
* <br><br>
* <ul>
* <li>
* Abramowitz, M., and I. A. Stegun (2007): <i>Handbook of Mathematics Functions</i> <b>Dover Book
* on Mathematics</b>
* </li>
* <li>
* Backstrom, T., and J. Fischer (2018): Fast Randomization for Distributed Low Bit-rate Coding of
* Speech and Audio <i>IEEE/ACM Transactions on Audio, Speech, and Language Processing</i> <b>26
* (1)</b> 19-30
* </li>
* <li>
* Chi-Squared Distribution (2019): Chi-Squared Function
* https://en.wikipedia.org/wiki/Chi-squared_distribution
* </li>
* <li>
* Johnson, N. L., S. Kotz, and N. Balakrishnan (1994): <i>Continuous Univariate Distributions
* 2<sup>nd</sup> Edition</i> <b>John Wiley and Sons</b>
* </li>
* <li>
* National Institute of Standards and Technology (2019): Chi-Squared Distribution
* https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm
* </li>
* </ul>
*
* <br><br>
* <ul>
* <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
* <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalAnalysisLibrary.md">Numerical Analysis Library</a></li>
* <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/README.md">R<sup>d</sup> Continuous/Discrete Probability Measures</a></li>
* <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/chisquare/README.md">Chi-Square Distribution Implementation/Properties</a></li>
* </ul>
*
* @author Lakshmi Krishnamurthy
*/
public class R1CentralWilsonHilferty
extends org.drip.measure.chisquare.R1WilsonHilferty
{
/**
* Construct a Standard Instance of R1CentralWilsonHilferty
*
* @param degreesOfFreedom Degrees of Freedom
*
* @return Standard Instance of R1CentralWilsonHilferty
*/
public static final R1CentralWilsonHilferty Standard (
final int degreesOfFreedom)
{
if (0 >= degreesOfFreedom)
{
return null;
}
double twoOver_9degreesOfFreedom_ = 2. / (9. * degreesOfFreedom);
try
{
return new R1CentralWilsonHilferty (
degreesOfFreedom,
new org.drip.measure.gaussian.R1UnivariateNormal (
1. - twoOver_9degreesOfFreedom_,
twoOver_9degreesOfFreedom_
)
);
}
catch (java.lang.Exception e)
{
e.printStackTrace();
}
return null;
}
protected R1CentralWilsonHilferty (
final int degreesOfFreedom,
final org.drip.measure.gaussian.R1UnivariateNormal r1UnivariateNormal)
throws java.lang.Exception
{
super (
degreesOfFreedom,
r1UnivariateNormal
);
}
@Override public double transform (
final double x)
{
return x;
}
@Override public double inverseTransform (
final double wilsonHilferty)
{
return wilsonHilferty;
}
@Override public double random()
throws java.lang.Exception
{
double sumOfStandardNormalSquares = 0.;
double degreesOfFreedom = degreesOfFreedom();
for (int drawIndex = 0; drawIndex < degreesOfFreedom; ++drawIndex)
{
double randomStandardNormal = org.drip.measure.gaussian.NormalQuadrature.InverseCDF
(java.lang.Math.random());
sumOfStandardNormalSquares = sumOfStandardNormalSquares +
randomStandardNormal * randomStandardNormal;
}
return java.lang.Math.pow (
sumOfStandardNormalSquares / degreesOfFreedom,
1. / 3.
);
}
}