R1NonCentralComposite.java
- package org.drip.measure.chisquare;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2020 Lakshmi Krishnamurthy
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
- * asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
- * analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
- * equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
- * numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
- * and computational support.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three modules:
- *
- * - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
- *
- * DROP Product Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Loan Analytics
- * - Transaction Cost Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Asset Liability Management Analytics
- * - Capital Estimation Analytics
- * - Exposure Analytics
- * - Margin Analytics
- * - XVA Analytics
- *
- * DROP Computational Core implements libraries for the following:
- * - Algorithm Support
- * - Computation Support
- * - Function Analysis
- * - Model Validation
- * - Numerical Analysis
- * - Numerical Optimizer
- * - Spline Builder
- * - Statistical Learning
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>R1NonCentralComposite</i> implements Composite R<sup>1</sup> Non-central Chi-Square Distributions. The
- * References are:
- *
- * <br><br>
- * <ul>
- * <li>
- * Johnson, N. L., S. Kotz, and N. Balakrishnan (1995): <i>Continuous Univariate Distributions
- * 2<sup>nd</sup> Edition</i> <b>John Wiley and Sons</b>
- * </li>
- * <li>
- * Muirhead, R. (2005): <i>Aspects of Multivariate Statistical Theory 2<sup>nd</sup> Edition</i>
- * <b>Wiley</b>
- * </li>
- * <li>
- * Non-central Chi-Squared Distribution (2019): Chi-Squared Function
- * https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution
- * </li>
- * <li>
- * Sankaran, M. (1963): Approximations to the Non-Central Chi-Square Distribution <i>Biometrika</i>
- * <b>50 (1-2)</b> 199-204
- * </li>
- * <li>
- * Young, D. S. (2010): tolerance: An R Package for Estimating Tolerance Intervals <i>Journal of
- * Statistical Software</i> <b>36 (5)</b> 1-39
- * </li>
- * </ul>
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalAnalysisLibrary.md">Numerical Analysis Library</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/README.md">R<sup>d</sup> Continuous/Discrete Probability Measures</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/chisquare/README.md">Chi-Square Distribution Implementation/Properties</a></li>
- * </ul>
- *
- * @author Lakshmi Krishnamurthy
- */
- public class R1NonCentralComposite
- {
- /**
- * Generate a Random Variable following the Rice Distribution
- *
- * @param lambda Lambda of the Rice Distribution
- *
- * @return Random Variable following the Rice Distribution
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public static final double RandomRice (
- final double lambda)
- throws java.lang.Exception
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (
- lambda
- ) || 0. >= lambda
- )
- {
- throw new java.lang.Exception (
- "R1NonCentralComposite::RandomRice => Invalid Inputs"
- );
- }
- double random1 = new org.drip.measure.gaussian.R1UnivariateNormal (
- 0.,
- 1.
- ).random();
- double random2 = new org.drip.measure.gaussian.R1UnivariateNormal (
- java.lang.Math.sqrt (
- lambda
- ),
- 1.
- ).random();
- return random1 * random1 + random2 * random2;
- }
- /**
- * Generate a Non-Central F Distribution Based off of R<sup>1</sup> Non-central Chi-Square Distribution
- * Pair
- *
- * @param r1NonCentral1 R<sup>1</sup> Non-central Chi-Square Distribution #1
- * @param r1NonCentral2 R<sup>1</sup> Non-central Chi-Square Distribution #2
- *
- * @return Non-Central F Distribution Random Variable
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public static final double RandomNonCentralF (
- final org.drip.measure.chisquare.R1NonCentral r1NonCentral1,
- final org.drip.measure.chisquare.R1NonCentral r1NonCentral2)
- throws java.lang.Exception
- {
- if (null == r1NonCentral1 ||
- null == r1NonCentral2)
- {
- throw new java.lang.Exception (
- "R1NonCentralComposite::RandomNonCentralF => Invalid Inputs"
- );
- }
- return r1NonCentral1.random() * r1NonCentral2.parameters().degreesOfFreedom() /
- r1NonCentral1.parameters().degreesOfFreedom() / r1NonCentral2.random();
- }
- /**
- * Generate the R<sup>1</sup> Non-central Distribution corresponding to the Sum of Independent
- * R<sup>1</sup> Non-central Distributions
- *
- * @param r1NonCentralArray Array of Independent R<sup>1</sup> Non-central Distributions
- *
- * @return R<sup>1</sup> Non-central Distribution corresponding to the Sum of Independent R<sup>1</sup>
- * Non-central Distributions
- */
- public static final org.drip.measure.chisquare.R1NonCentral IndependentSum (
- final org.drip.measure.chisquare.R1NonCentral[] r1NonCentralArray)
- {
- if (null == r1NonCentralArray)
- {
- return null;
- }
- double compositeDegreesOfFreedom = 0.;
- double compositeNonCentralityParameter = 0.;
- int nonCentralDistributionCount = r1NonCentralArray.length;
- for (int nonCentralDistributionIndex = 0;
- nonCentralDistributionIndex < nonCentralDistributionCount;
- ++nonCentralDistributionIndex
- )
- {
- if (null == r1NonCentralArray[nonCentralDistributionIndex])
- {
- return null;
- }
- org.drip.measure.chisquare.R1NonCentralParameters r1NonCentralParameters =
- r1NonCentralArray[nonCentralDistributionIndex].parameters();
- compositeDegreesOfFreedom = r1NonCentralParameters.degreesOfFreedom();
- compositeNonCentralityParameter = r1NonCentralParameters.nonCentralityParameter();
- }
- return org.drip.measure.chisquare.R1NonCentral.Standard (
- compositeDegreesOfFreedom,
- compositeNonCentralityParameter,
- r1NonCentralArray[0].gammaEstimator(),
- r1NonCentralArray[0].digammaEstimator(),
- r1NonCentralArray[0].lowerIncompleteGammaEstimator(),
- r1NonCentralArray[0].modifiedBesselFirstKindEstimator()
- );
- }
- }