R1Multivariate.java
- package org.drip.measure.continuous;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2020 Lakshmi Krishnamurthy
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- * Copyright (C) 2018 Lakshmi Krishnamurthy
- * Copyright (C) 2017 Lakshmi Krishnamurthy
- * Copyright (C) 2016 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
- * asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
- * analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
- * equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
- * numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
- * and computational support.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three modules:
- *
- * - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
- *
- * DROP Product Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Loan Analytics
- * - Transaction Cost Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Asset Liability Management Analytics
- * - Capital Estimation Analytics
- * - Exposure Analytics
- * - Margin Analytics
- * - XVA Analytics
- *
- * DROP Computational Core implements libraries for the following:
- * - Algorithm Support
- * - Computation Support
- * - Function Analysis
- * - Model Validation
- * - Numerical Analysis
- * - Numerical Optimizer
- * - Spline Builder
- * - Statistical Learning
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>R1Multivariate</i> contains the Generalized R<sup>1</sup> Multivariate Distributions.
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalAnalysisLibrary.md">Numerical Analysis Library</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/README.md">R<sup>d</sup> Continuous/Discrete Probability Measures</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/continuous/README.md">R<sup>1</sup> and R<sup>d</sup> Continuous Random Measure</a></li>
- * </ul>
- *
- * @author Lakshmi Krishnamurthy
- */
- public abstract class R1Multivariate {
- private org.drip.measure.continuous.MultivariateMeta _meta = null;
- protected R1Multivariate (
- final org.drip.measure.continuous.MultivariateMeta meta)
- throws java.lang.Exception
- {
- if (null == (_meta = meta))
- throw new java.lang.Exception ("R1Multivariate Constructor => Invalid Inputs");
- }
- /**
- * Retrieve the Multivariate Meta Instance
- *
- * @return The Multivariate Meta Instance
- */
- public org.drip.measure.continuous.MultivariateMeta meta()
- {
- return _meta;
- }
- /**
- * Retrieve the Left Edge Bounding Multivariate
- *
- * @return The Left Edge Bounding Multivariate
- */
- public double[] leftEdge()
- {
- int iNumVariate = _meta.numVariable();
- double[] adblLeftEdge = new double[iNumVariate];
- for (int i = 0; i < iNumVariate; ++i)
- adblLeftEdge[i] = java.lang.Double.MIN_NORMAL;
- return adblLeftEdge;
- }
- /**
- * Retrieve the Right Edge Bounding Multivariate
- *
- * @return The Right Edge Bounding Multivariate
- */
- public double[] rightEdge()
- {
- int iNumVariate = _meta.numVariable();
- double[] adblRightEdge = new double[iNumVariate];
- for (int i = 0; i < iNumVariate; ++i)
- adblRightEdge[i] = java.lang.Double.MAX_VALUE;
- return adblRightEdge;
- }
- /**
- * Compute the Density under the Distribution at the given Multivariate
- *
- * @param adblVariate The Multivariate at which the Density needs to be computed
- *
- * @return The Density
- *
- * @throws java.lang.Exception Thrown if the Density cannot be computed
- */
- public abstract double density (
- final double[] adblVariate)
- throws java.lang.Exception;
- /**
- * Convert the Multivariate Density into an RdToR1 Functions Instance
- *
- * @return The Multivariate Density converted into an RdToR1 Functions Instance
- */
- public org.drip.function.definition.RdToR1 densityRdToR1()
- {
- return new org.drip.function.definition.RdToR1 (null) {
- @Override public int dimension()
- {
- return _meta.numVariable();
- }
- @Override public double evaluate (
- final double[] adblVariate)
- throws java.lang.Exception
- {
- return density (adblVariate);
- }
- };
- }
- /**
- * Compute the Cumulative under the Distribution to the given Variate Values
- *
- * @param adblVariate Array of Variate Values to which the Cumulative is to be computed
- *
- * @return The Cumulative
- *
- * @throws java.lang.Exception Thrown if the Cumulative cannot be computed
- */
- public double cumulative (
- final double[] adblVariate)
- throws java.lang.Exception
- {
- return densityRdToR1().integrate (leftEdge(), adblVariate);
- }
- /**
- * Compute the Incremental under the Distribution between the 2 Multivariate Instances
- *
- * @param adblVariateLeft Left Multivariate Instance to which the Cumulative is to be computed
- * @param adblVariateRight Right Multivariate Instance to which the Cumulative is to be computed
- *
- * @return The Incremental
- *
- * @throws java.lang.Exception Thrown if the Incremental cannot be computed
- */
- public double incremental (
- final double[] adblVariateLeft,
- final double[] adblVariateRight)
- throws java.lang.Exception
- {
- return densityRdToR1().integrate (adblVariateLeft, adblVariateRight);
- }
- /**
- * Compute the Expectation of the Specified R^d To R^1 Function Instance
- *
- * @param funcRdToR1 The R^d To R^1 Function Instance
- *
- * @return The Expectation of the Specified R^d To R^1 Function Instance
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public double expectation (
- final org.drip.function.definition.RdToR1 funcRdToR1)
- throws java.lang.Exception
- {
- if (null == funcRdToR1)
- throw new java.lang.Exception ("R1Multivariate::expectation => Invalid Inputs");
- return new org.drip.function.definition.RdToR1 (null) {
- @Override public int dimension()
- {
- return _meta.numVariable();
- }
- @Override public double evaluate (
- final double[] adblVariate)
- throws java.lang.Exception
- {
- return density (adblVariate) * funcRdToR1.evaluate (adblVariate);
- }
- }.integrate (leftEdge(), rightEdge());
- }
- /**
- * Compute the Mean of the Distribution
- *
- * @return The Mean of the Distribution
- */
- public double[] mean()
- {
- int iNumVariate = _meta.numVariable();
- double[] adblMean = new double[iNumVariate];
- for (int i = 0; i < iNumVariate; ++i) {
- final int iVariate = i;
- try {
- adblMean[i] = expectation (new org.drip.function.definition.RdToR1 (null) {
- @Override public int dimension()
- {
- return _meta.numVariable();
- }
- @Override public double evaluate (
- final double[] adblVariate)
- throws java.lang.Exception
- {
- return density (adblVariate) * adblVariate[iVariate];
- }
- });
- } catch (java.lang.Exception e) {
- e.printStackTrace();
- return null;
- }
- }
- return adblMean;
- }
- /**
- * Compute the Variance of the Distribution
- *
- * @return The Variance of the Distribution
- */
- public double[] variance()
- {
- final double[] adblMean = mean();
- if (null == adblMean) return null;
- final int iNumVariate = adblMean.length;
- double[] adblVariance = new double[iNumVariate];
- for (int i = 0; i < iNumVariate; ++i) {
- final int iVariate = i;
- try {
- adblVariance[i] = expectation (new org.drip.function.definition.RdToR1 (null) {
- @Override public int dimension()
- {
- return _meta.numVariable();
- }
- @Override public double evaluate (
- final double[] adblVariate)
- throws java.lang.Exception
- {
- double dblSecondMoment = 0.;
- for (int i = 0; i < iNumVariate; ++i) {
- double dblOffset = adblVariate[iVariate] - adblMean[iVariate];
- dblSecondMoment = dblSecondMoment + dblOffset * dblOffset;
- }
- return density (adblVariate) * dblSecondMoment;
- }
- });
- } catch (java.lang.Exception e) {
- e.printStackTrace();
- return null;
- }
- }
- return adblVariance;
- }
- }