R1Univariate.java
- package org.drip.measure.continuous;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2020 Lakshmi Krishnamurthy
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- * Copyright (C) 2018 Lakshmi Krishnamurthy
- * Copyright (C) 2017 Lakshmi Krishnamurthy
- * Copyright (C) 2016 Lakshmi Krishnamurthy
- * Copyright (C) 2015 Lakshmi Krishnamurthy
- * Copyright (C) 2014 Lakshmi Krishnamurthy
- * Copyright (C) 2013 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
- * asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
- * analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
- * equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
- * numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
- * and computational support.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three modules:
- *
- * - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
- *
- * DROP Product Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Loan Analytics
- * - Transaction Cost Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Asset Liability Management Analytics
- * - Capital Estimation Analytics
- * - Exposure Analytics
- * - Margin Analytics
- * - XVA Analytics
- *
- * DROP Computational Core implements libraries for the following:
- * - Algorithm Support
- * - Computation Support
- * - Function Analysis
- * - Model Validation
- * - Numerical Analysis
- * - Numerical Optimizer
- * - Spline Builder
- * - Statistical Learning
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>R1Univariate</i> exposes the Base Abstract Class behind Univariate R<sup>1</sup> Distributions. It
- * exports the Methods for incremental, cumulative, and inverse cumulative distribution densities.
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalAnalysisLibrary.md">Numerical Analysis Library</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/README.md">R<sup>d</sup> Continuous/Discrete Probability Measures</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/continuous/README.md">R<sup>1</sup> and R<sup>d</sup> Continuous Random Measure</a></li>
- * </ul>
- *
- * @author Lakshmi Krishnamurthy
- */
- public abstract class R1Univariate {
- /**
- * Lay out the Support of the PDF Range
- *
- * @return Support of the PDF Range
- */
- public abstract double[] support();
- /**
- * Indicate if x is inside the Supported Range
- *
- * @param x X
- *
- * @return TRUE - x is inside of the Supported Range
- */
- public boolean supported (
- final double x)
- {
- if (java.lang.Double.isNaN (x))
- {
- return false;
- }
- double[] range = support();
- return range[0] <= x && x <= range[1];
- }
- /**
- * Compute the Density under the Distribution at the given Variate
- *
- * @param dblX Variate at which the Density needs to be computed
- *
- * @return The Density
- *
- * @throws java.lang.Exception Thrown if the input is invalid
- */
- public abstract double density (
- final double dblX)
- throws java.lang.Exception;
- /**
- * Compute the cumulative under the distribution to the given value
- *
- * @param dblX Variate to which the cumulative is to be computed
- *
- * @return The cumulative
- *
- * @throws java.lang.Exception Thrown if the inputs are invalid
- */
- public abstract double cumulative (
- final double dblX)
- throws java.lang.Exception;
- /**
- * Compute the Incremental under the Distribution between the 2 variates
- *
- * @param dblXLeft Left Variate to which the cumulative is to be computed
- * @param dblXRight Right Variate to which the cumulative is to be computed
- *
- * @return The Incremental under the Distribution between the 2 variates
- *
- * @throws java.lang.Exception Thrown if the inputs are invalid
- */
- public double incremental (
- final double dblXLeft,
- final double dblXRight)
- throws java.lang.Exception
- {
- return cumulative (dblXRight) - cumulative (dblXLeft);
- }
- /**
- * Compute the inverse cumulative under the distribution corresponding to the given value
- *
- * @param p Value corresponding to which the inverse cumulative is to be computed
- *
- * @return The inverse cumulative
- *
- * @throws java.lang.Exception Thrown if the Input is invalid
- */
- public double invCumulative (
- final double p)
- throws java.lang.Exception
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (p) || 0. > p || 1. < p)
- {
- throw new java.lang.Exception ("R1Univariate::invCumulative => Invalid Inputs");
- }
- org.drip.function.r1tor1solver.FixedPointFinderOutput fixedPointFinderOutput =
- new org.drip.function.r1tor1solver.FixedPointFinderBrent (
- 0.,
- new org.drip.function.definition.R1ToR1 (null)
- {
- @Override public double evaluate (
- final double u)
- throws java.lang.Exception
- {
- return cumulative (u) - p;
- }
- },
- true
- ).findRoot();
- if (null == fixedPointFinderOutput)
- {
- throw new java.lang.Exception ("R1Univariate::invCumulative => Cannot find Root");
- }
- return fixedPointFinderOutput.getRoot();
- }
- /**
- * Retrieve the Mean of the Distribution
- *
- * @return The Mean of the Distribution
- *
- * @throws java.lang.Exception Thrown if the Mean cannot be estimated
- */
- public abstract double mean()
- throws java.lang.Exception;
- /**
- * Retrieve the Median of the Distribution
- *
- * @return The Median of the Distribution
- *
- * @throws java.lang.Exception Thrown if the Median cannot be estimated
- */
- public double median()
- throws java.lang.Exception
- {
- return invCumulative (0.50);
- }
- /**
- * Retrieve the Mode of the Distribution
- *
- * @return The Mode of the Distribution
- *
- * @throws java.lang.Exception Thrown if the Mode cannot be estimated
- */
- public double mode()
- throws java.lang.Exception
- {
- final org.drip.function.definition.R1ToR1 densityFunction =
- new org.drip.function.definition.R1ToR1 (null)
- {
- @Override public double evaluate (
- final double u)
- throws java.lang.Exception
- {
- return density (u);
- }
- };
- org.drip.function.r1tor1solver.FixedPointFinderOutput fixedPointFinderOutput =
- new org.drip.function.r1tor1solver.FixedPointFinderBrent (
- 0.,
- new org.drip.function.definition.R1ToR1 (null)
- {
- @Override public double evaluate (
- final double u)
- throws java.lang.Exception
- {
- return densityFunction.derivative (
- u,
- 1
- );
- }
- },
- true
- ).findRoot();
- if (null == fixedPointFinderOutput)
- {
- throw new java.lang.Exception ("R1Univariate::invCumulative => Cannot find Root");
- }
- return fixedPointFinderOutput.getRoot();
- }
- /**
- * Retrieve the Variance of the Distribution
- *
- * @return The Variance of the Distribution
- *
- * @throws java.lang.Exception Thrown if the Variance cannot be estimated
- */
- public abstract double variance()
- throws java.lang.Exception;
- /**
- * Retrieve the Skewness of the Distribution
- *
- * @return The Skewness of the Distribution
- *
- * @throws java.lang.Exception Thrown if the Skewness cannot be estimated
- */
- public double skewness()
- throws java.lang.Exception
- {
- throw new java.lang.Exception ("R1Univariate::skewness => Not implemented");
- }
- /**
- * Retrieve the Excess Kurtosis of the Distribution
- *
- * @return The Excess Kurtosis of the Distribution
- *
- * @throws java.lang.Exception Thrown if the Skewness cannot be estimated
- */
- public double excessKurtosis()
- throws java.lang.Exception
- {
- throw new java.lang.Exception ("R1Univariate::excessKurtosis => Not implemented");
- }
- /**
- * Retrieve the Differential Entropy of the Distribution
- *
- * @return The Differential Entropy of the Distribution
- *
- * @throws java.lang.Exception Thrown if the Entropy cannot be estimated
- */
- public double differentialEntropy()
- throws java.lang.Exception
- {
- return org.drip.numerical.integration.NewtonCotesQuadratureGenerator.GaussLaguerreLeftDefinite (
- 0.,
- 10000
- ).integrate (
- new org.drip.function.definition.R1ToR1 (null)
- {
- @Override public double evaluate (
- final double t)
- throws java.lang.Exception
- {
- double density = density (t);
- return density * java.lang.Math.log (density);
- }
- }
- );
- }
- /**
- * Construct the Moment Generating Function
- *
- * @return The Moment Generating Function
- */
- public org.drip.function.definition.R1ToR1 momentGeneratingFunction()
- {
- return null;
- }
- /**
- * Construct the Probability Generating Function
- *
- * @return The Probability Generating Function
- */
- public org.drip.function.definition.R1ToR1 probabilityGeneratingFunction()
- {
- return null;
- }
- /**
- * Generate a Random Variable corresponding to the Distribution
- *
- * @return Random Variable corresponding to the Distribution
- *
- * @throws java.lang.Exception Thrown if the Random Instance cannot be estimated
- */
- public double random()
- throws java.lang.Exception
- {
- return invCumulative (java.lang.Math.random());
- }
- /**
- * Retrieve the Array of Generated Random Variables
- *
- * @param arrayCount Number of Elements
- *
- * @return Array of Generated Random Variables
- */
- public double[] randomArray (
- final int arrayCount)
- {
- if (0 >= arrayCount)
- {
- return null;
- }
- double[] randomArray = new double[arrayCount];
- for (int index = 0; index < arrayCount; ++index)
- {
- try
- {
- randomArray[index] = random();
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- return null;
- }
- }
- return randomArray;
- }
- /**
- * Retrieve the Population Central Measures
- *
- * @return The Population Central Measures
- */
- public org.drip.measure.statistics.PopulationCentralMeasures populationCentralMeasures()
- {
- try
- {
- return new org.drip.measure.statistics.PopulationCentralMeasures (
- mean(),
- variance()
- );
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Retrieve the Univariate Weighted Histogram
- *
- * @return The Univariate Weighted Histogram
- */
- public org.drip.numerical.common.Array2D histogram()
- {
- return null;
- }
- }