R1UnivariateExponential.java

  1. package org.drip.measure.continuous;

  2. /*
  3.  * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
  4.  */

  5. /*!
  6.  * Copyright (C) 2020 Lakshmi Krishnamurthy
  7.  * Copyright (C) 2019 Lakshmi Krishnamurthy
  8.  *
  9.  *  This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
  10.  *      asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
  11.  *      analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
  12.  *      equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
  13.  *      numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
  14.  *      and computational support.
  15.  *  
  16.  *      https://lakshmidrip.github.io/DROP/
  17.  *  
  18.  *  DROP is composed of three modules:
  19.  *  
  20.  *  - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
  21.  *  - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
  22.  *  - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
  23.  *
  24.  *  DROP Product Core implements libraries for the following:
  25.  *  - Fixed Income Analytics
  26.  *  - Loan Analytics
  27.  *  - Transaction Cost Analytics
  28.  *
  29.  *  DROP Portfolio Core implements libraries for the following:
  30.  *  - Asset Allocation Analytics
  31.  *  - Asset Liability Management Analytics
  32.  *  - Capital Estimation Analytics
  33.  *  - Exposure Analytics
  34.  *  - Margin Analytics
  35.  *  - XVA Analytics
  36.  *
  37.  *  DROP Computational Core implements libraries for the following:
  38.  *  - Algorithm Support
  39.  *  - Computation Support
  40.  *  - Function Analysis
  41.  *  - Model Validation
  42.  *  - Numerical Analysis
  43.  *  - Numerical Optimizer
  44.  *  - Spline Builder
  45.  *  - Statistical Learning
  46.  *
  47.  *  Documentation for DROP is Spread Over:
  48.  *
  49.  *  - Main                     => https://lakshmidrip.github.io/DROP/
  50.  *  - Wiki                     => https://github.com/lakshmiDRIP/DROP/wiki
  51.  *  - GitHub                   => https://github.com/lakshmiDRIP/DROP
  52.  *  - Repo Layout Taxonomy     => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
  53.  *  - Javadoc                  => https://lakshmidrip.github.io/DROP/Javadoc/index.html
  54.  *  - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
  55.  *  - Release Versions         => https://lakshmidrip.github.io/DROP/version.html
  56.  *  - Community Credits        => https://lakshmidrip.github.io/DROP/credits.html
  57.  *  - Issues Catalog           => https://github.com/lakshmiDRIP/DROP/issues
  58.  *  - JUnit                    => https://lakshmidrip.github.io/DROP/junit/index.html
  59.  *  - Jacoco                   => https://lakshmidrip.github.io/DROP/jacoco/index.html
  60.  *
  61.  *  Licensed under the Apache License, Version 2.0 (the "License");
  62.  *      you may not use this file except in compliance with the License.
  63.  *  
  64.  *  You may obtain a copy of the License at
  65.  *      http://www.apache.org/licenses/LICENSE-2.0
  66.  *  
  67.  *  Unless required by applicable law or agreed to in writing, software
  68.  *      distributed under the License is distributed on an "AS IS" BASIS,
  69.  *      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  70.  *  
  71.  *  See the License for the specific language governing permissions and
  72.  *      limitations under the License.
  73.  */

  74. /**
  75.  * <i>R1UnivariateExponential</i> implements the Univariate R<sup>1</sup> Exponential Distribution. It
  76.  *  implements the Incremental, the Cumulative, and the Inverse Cumulative Distribution Densities.
  77.  *
  78.  *  <br><br>
  79.  *  <ul>
  80.  *      <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
  81.  *      <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalAnalysisLibrary.md">Numerical Analysis Library</a></li>
  82.  *      <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/README.md">R<sup>d</sup> Continuous/Discrete Probability Measures</a></li>
  83.  *      <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/continuous/README.md">R<sup>1</sup> and R<sup>d</sup> Continuous Random Measure</a></li>
  84.  *  </ul>
  85.  *
  86.  * @author Lakshmi Krishnamurthy
  87.  */

  88. public class R1UnivariateExponential extends org.drip.measure.continuous.R1Univariate
  89. {
  90.     private double _lambda = java.lang.Double.NaN;

  91.     /**
  92.      * Construct the Standard R1UnivariateExponential Distribution (lambda = 1.)
  93.      *
  94.      * @return The Standard R1UnivariateExponential Distribution
  95.      */

  96.     public static final R1UnivariateExponential Standard()
  97.     {
  98.         try
  99.         {
  100.             return new R1UnivariateExponential (1.);
  101.         }
  102.         catch (java.lang.Exception e)
  103.         {
  104.             e.printStackTrace();
  105.         }

  106.         return null;
  107.     }

  108.     /**
  109.      * R1UnivariateExponential Constructor
  110.      *
  111.      * @param lambda Lambda (Inverse Scaling Parameter)
  112.      *
  113.      * @throws java.lang.Exception Thrown if the Inputs are Invalid
  114.      */

  115.     public R1UnivariateExponential (
  116.         final double lambda)
  117.         throws java.lang.Exception
  118.     {
  119.         if (!org.drip.numerical.common.NumberUtil.IsValid (_lambda = lambda) || 0. >= _lambda)
  120.         {
  121.             throw new java.lang.Exception ("R1UnivariateExponential Constructor => Invalid Inputs: " + _lambda);
  122.         }
  123.     }

  124.     /**
  125.      * Retrieve the Lambda (Inverse Scaling Parameter)
  126.      *
  127.      * @return The Lambda (Inverse Scaling Parameter)
  128.      */

  129.     public double lambda()
  130.     {
  131.         return _lambda;
  132.     }

  133.     @Override public double[] support()
  134.     {
  135.         return new double[]
  136.         {
  137.             0.,
  138.             java.lang.Double.POSITIVE_INFINITY
  139.         };
  140.     }

  141.     @Override public double cumulative (
  142.         final double x)
  143.         throws java.lang.Exception
  144.     {
  145.         if (!org.drip.numerical.common.NumberUtil.IsValid (x) || x < 0.)
  146.             throw new java.lang.Exception ("R1UnivariateExponential::cumulative => Invalid Inputs");

  147.         return 1. - java.lang.Math.exp (-1. * _lambda * x);
  148.     }

  149.     @Override public double incremental (
  150.         final double xLeft,
  151.         final double xRight)
  152.         throws java.lang.Exception
  153.     {
  154.         return cumulative (xLeft) - cumulative (xRight);
  155.     }

  156.     @Override public double invCumulative (
  157.         final double y)
  158.         throws java.lang.Exception
  159.     {
  160.         if (!org.drip.numerical.common.NumberUtil.IsValid (y) || 1. < y || 0. > y)
  161.             throw new java.lang.Exception ("R1UnivariateExponential::invCumulative => Cannot calculate");

  162.         return -1. / _lambda * java.lang.Math.log (1. - y);
  163.     }

  164.     @Override public double density (
  165.         final double x)
  166.         throws java.lang.Exception
  167.     {
  168.         if (!org.drip.numerical.common.NumberUtil.IsValid (x) || x < 0.)
  169.             throw new java.lang.Exception ("R1UnivariateExponential::density => Invalid Inputs");

  170.         return _lambda * java.lang.Math.exp (-1. * _lambda * x);
  171.     }

  172.     @Override public double mean()
  173.     {
  174.         return 1. / _lambda;
  175.     }

  176.     @Override public double variance()
  177.     {
  178.         return 1. / (_lambda * _lambda);
  179.     }

  180.     @Override public org.drip.numerical.common.Array2D histogram()
  181.     {
  182.         return null;
  183.     }
  184. }