R1UnivariateScaledExponential.java
- package org.drip.measure.continuous;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2020 Lakshmi Krishnamurthy
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
- * asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
- * analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
- * equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
- * numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
- * and computational support.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three modules:
- *
- * - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
- *
- * DROP Product Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Loan Analytics
- * - Transaction Cost Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Asset Liability Management Analytics
- * - Capital Estimation Analytics
- * - Exposure Analytics
- * - Margin Analytics
- * - XVA Analytics
- *
- * DROP Computational Core implements libraries for the following:
- * - Algorithm Support
- * - Computation Support
- * - Function Analysis
- * - Model Validation
- * - Numerical Analysis
- * - Numerical Optimizer
- * - Spline Builder
- * - Statistical Learning
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>R1UnivariateScaledExponential</i> implements the Probability Density Function for the Scaled Univariate
- * R<sup>1</sup> Exponential Function. The References are:
- *
- * <br><br>
- * <ul>
- * <li>
- * Gradshteyn, I. S., I. M. Ryzhik, Y. V. Geronimus, M. Y. Tseytlin, and A. Jeffrey (2015):
- * <i>Tables of Integrals, Series, and Products</i> <b>Academic Press</b>
- * </li>
- * <li>
- * Hilfer, J. (2002): H-function Representations for Stretched Exponential Relaxation and non-Debye
- * Susceptibilities in Glassy Systems <i>Physical Review E</i> <b>65 (6)</b> 061510
- * </li>
- * <li>
- * Wikipedia (2019): Stretched Exponential Function
- * https://en.wikipedia.org/wiki/Stretched_exponential_function
- * </li>
- * <li>
- * Wuttke, J. (2012): Laplace-Fourier Transform of the Stretched Exponential Function: Analytic
- * Error-Bounds, Double Exponential Transform, and Open Source Implementation <i>libkw</i>
- * <i>Algorithm</i> <b>5 (4)</b> 604-628
- * </li>
- * <li>
- * Zorn, R. (2002): Logarithmic Moments of Relaxation Time Distributions <i>Journal of Chemical
- * Physics</i> <b>116 (8)</b> 3204-3209
- * </li>
- * </ul>
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalAnalysisLibrary.md">Numerical Analysis Library</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/README.md">R<sup>d</sup> Continuous/Discrete Probability Measures</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/continuous/README.md">R<sup>1</sup> and R<sup>d</sup> Continuous Random Measure</a></li>
- * </ul>
- *
- * @author Lakshmi Krishnamurthy
- */
- public class R1UnivariateScaledExponential extends org.drip.measure.continuous.R1Univariate
- {
- private double _normalizer = java.lang.Double.NaN;
- private org.drip.function.definition.R1ToR1 _gammaEstimator = null;
- private org.drip.specialfunction.definition.ScaledExponentialEstimator _scaledExponentialEstimator =
- null;
- /**
- * UnivariateScaledExponential Constructor
- *
- * @param scaledExponentialEstimator Scaled Exponential Estimator
- * @param gammaEstimator Gamma Estimator
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public R1UnivariateScaledExponential (
- final org.drip.specialfunction.definition.ScaledExponentialEstimator scaledExponentialEstimator,
- final org.drip.function.definition.R1ToR1 gammaEstimator)
- throws java.lang.Exception
- {
- if (null == (_scaledExponentialEstimator = scaledExponentialEstimator) ||
- null == (_gammaEstimator = gammaEstimator))
- {
- throw new java.lang.Exception ("R1UnivariateScaledExponential Constructor => Invalid Inputs");
- }
- _normalizer = 1. / _gammaEstimator.evaluate (1. + (1. / _scaledExponentialEstimator.exponent())) /
- _scaledExponentialEstimator.characteristicRelaxationTime();
- }
- /**
- * Retrieve the Scaled Exponential Estimator
- *
- * @return Scaled Exponential Estimator
- */
- public org.drip.specialfunction.definition.ScaledExponentialEstimator scaledExponentialEstimator()
- {
- return _scaledExponentialEstimator;
- }
- /**
- * Retrieve the Gamma Estimator
- *
- * @return Gamma Estimator
- */
- public org.drip.function.definition.R1ToR1 gammaEstimator()
- {
- return _gammaEstimator;
- }
- @Override public double[] support()
- {
- return new double[]
- {
- 0.,
- java.lang.Double.POSITIVE_INFINITY
- };
- }
- @Override public double density (
- final double t)
- throws java.lang.Exception
- {
- return _scaledExponentialEstimator.evaluate (t) * _normalizer;
- }
- @Override public double cumulative (
- final double t)
- throws java.lang.Exception
- {
- if (!supported (t))
- {
- throw new java.lang.Exception ("R1UnivariateScaledExponential::cumulative => Invalid Inputs");
- }
- return org.drip.numerical.integration.NewtonCotesQuadratureGenerator.Zero_PlusOne (
- 0.,
- t,
- 100
- ).integrate (
- new org.drip.function.definition.R1ToR1 (null)
- {
- @Override public double evaluate (
- final double u)
- throws java.lang.Exception
- {
- return java.lang.Double.isInfinite (u) || 0. == u ? 0. :
- _scaledExponentialEstimator.evaluate (u);
- }
- }
- ) * _normalizer;
- }
- @Override public double incremental (
- final double t1,
- final double t2)
- throws java.lang.Exception
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (t1) || 0. > t1 ||
- !org.drip.numerical.common.NumberUtil.IsValid (t2) || t1 > t2)
- {
- throw new java.lang.Exception ("R1UnivariateScaledExponential::incremental => Invalid Inputs");
- }
- return org.drip.numerical.integration.NewtonCotesQuadratureGenerator.Zero_PlusOne (
- t1,
- t2,
- 100
- ).integrate (
- new org.drip.function.definition.R1ToR1 (null)
- {
- @Override public double evaluate (
- final double u)
- throws java.lang.Exception
- {
- return java.lang.Double.isInfinite (u) || 0. == u ? 0. :
- _scaledExponentialEstimator.evaluate (u);
- }
- }
- ) * _normalizer;
- }
- @Override public double mean()
- throws java.lang.Exception
- {
- return _scaledExponentialEstimator.firstMoment (_gammaEstimator) * _normalizer;
- }
- @Override public double variance()
- throws java.lang.Exception
- {
- try
- {
- double mean = _scaledExponentialEstimator.firstMoment (_gammaEstimator) * _normalizer;
- return _scaledExponentialEstimator.higherMoment (
- 2,
- _gammaEstimator
- ) * _normalizer * _normalizer - mean * mean;
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- }
- return java.lang.Double.NaN;
- }
- /**
- * Retrieve the Normalizer
- *
- * @return Normalizer
- */
- public double normalizer()
- {
- return _normalizer;
- }
- /**
- * Retrieve the "Lambda" Parameter
- *
- * @return "Lambda" Parameter
- */
- public double lambda()
- {
- return 1. / _scaledExponentialEstimator.characteristicRelaxationTime();
- }
- }