R1UnivariateUniform.java
- package org.drip.measure.continuous;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2020 Lakshmi Krishnamurthy
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
- * asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
- * analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
- * equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
- * numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
- * and computational support.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three modules:
- *
- * - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
- *
- * DROP Product Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Loan Analytics
- * - Transaction Cost Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Asset Liability Management Analytics
- * - Capital Estimation Analytics
- * - Exposure Analytics
- * - Margin Analytics
- * - XVA Analytics
- *
- * DROP Computational Core implements libraries for the following:
- * - Algorithm Support
- * - Computation Support
- * - Function Analysis
- * - Model Validation
- * - Numerical Analysis
- * - Numerical Optimizer
- * - Spline Builder
- * - Statistical Learning
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>R1UnivariateUniform</i> implements the Univariate R<sup>1</sup> Uniform Distribution. It implements the
- * Incremental, the Cumulative, and the Inverse Cumulative Distribution Densities.
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalAnalysisLibrary.md">Numerical Analysis Library</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/README.md">R<sup>d</sup> Continuous/Discrete Probability Measures</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/continuous/README.md">R<sup>1</sup> and R<sup>d</sup> Continuous Random Measure</a></li>
- * </ul>
- *
- * @author Lakshmi Krishnamurthy
- */
- public class R1UnivariateUniform extends org.drip.measure.continuous.R1Univariate
- {
- private double _leftSupport = java.lang.Double.NaN;
- private double _rightSupport = java.lang.Double.NaN;
- /**
- * Construct a Standard (0, 1) R<sup>1</sup> Univariate Uniform Distribution
- *
- * @return Standard (0, 1) R<sup>1</sup> Univariate Uniform Distribution
- */
- public static final R1UnivariateUniform Standard()
- {
- try
- {
- return new R1UnivariateUniform (
- 0.,
- 1.
- );
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * R1UnivariateUniform Constructor
- *
- * @param leftSupport The Left Support
- * @param rightSupport The Right Support
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public R1UnivariateUniform (
- final double leftSupport,
- final double rightSupport)
- throws java.lang.Exception
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (_leftSupport = leftSupport) ||
- !org.drip.numerical.common.NumberUtil.IsValid (_rightSupport = rightSupport) ||
- _leftSupport >= _rightSupport)
- {
- throw new java.lang.Exception ("R1UnivariateUniform Constructor => Invalid Inputs");
- }
- }
- /**
- * Retrieve the Left Support
- *
- * @return The Left Support
- */
- public double leftSupport()
- {
- return _leftSupport;
- }
- /**
- * Retrieve the Right Support
- *
- * @return The Right Support
- */
- public double rightSupport()
- {
- return _rightSupport;
- }
- /**
- * Indicate if the specified x Value stays inside the Support
- *
- * @param x X
- *
- * @return The Value stays in Support
- */
- public boolean supported (
- final double x)
- {
- return org.drip.numerical.common.NumberUtil.IsValid (x) && x >= _leftSupport || x <= _rightSupport;
- }
- @Override public double[] support()
- {
- return new double[]
- {
- _leftSupport,
- _rightSupport
- };
- }
- @Override public double cumulative (
- final double x)
- throws java.lang.Exception
- {
- if (!supported (x))
- throw new java.lang.Exception ("R1UnivariateUniform::cumulative => Invalid Inputs");
- return (x - _leftSupport) / (_rightSupport - _leftSupport);
- }
- @Override public double incremental (
- final double xLeft,
- final double xRight)
- throws java.lang.Exception
- {
- return cumulative (xLeft) - cumulative (xRight);
- }
- @Override public double invCumulative (
- final double y)
- throws java.lang.Exception
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (y) || 1. < y || 0. > y)
- throw new java.lang.Exception ("R1UnivariateUniform::invCumulative => Cannot calculate");
- return y * (_rightSupport - _leftSupport) + _leftSupport;
- }
- @Override public double density (
- final double x)
- throws java.lang.Exception
- {
- if (!supported (x)) throw new java.lang.Exception ("R1UnivariateUniform::density => Invalid Inputs");
- return 1. / (_rightSupport - _leftSupport);
- }
- @Override public double mean()
- {
- return 0.5 * (_rightSupport + _leftSupport);
- }
- @Override public double variance()
- {
- double support = _rightSupport - _leftSupport;
- return support * support / 12.;
- }
- @Override public double random()
- {
- return java.lang.Math.random() * (_rightSupport - _leftSupport) + _leftSupport;
- }
- @Override public org.drip.numerical.common.Array2D histogram()
- {
- return null;
- }
- }