R1UnivariateUniform.java

  1. package org.drip.measure.continuous;

  2. /*
  3.  * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
  4.  */

  5. /*!
  6.  * Copyright (C) 2020 Lakshmi Krishnamurthy
  7.  * Copyright (C) 2019 Lakshmi Krishnamurthy
  8.  *
  9.  *  This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
  10.  *      asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
  11.  *      analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
  12.  *      equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
  13.  *      numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
  14.  *      and computational support.
  15.  *  
  16.  *      https://lakshmidrip.github.io/DROP/
  17.  *  
  18.  *  DROP is composed of three modules:
  19.  *  
  20.  *  - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
  21.  *  - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
  22.  *  - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
  23.  *
  24.  *  DROP Product Core implements libraries for the following:
  25.  *  - Fixed Income Analytics
  26.  *  - Loan Analytics
  27.  *  - Transaction Cost Analytics
  28.  *
  29.  *  DROP Portfolio Core implements libraries for the following:
  30.  *  - Asset Allocation Analytics
  31.  *  - Asset Liability Management Analytics
  32.  *  - Capital Estimation Analytics
  33.  *  - Exposure Analytics
  34.  *  - Margin Analytics
  35.  *  - XVA Analytics
  36.  *
  37.  *  DROP Computational Core implements libraries for the following:
  38.  *  - Algorithm Support
  39.  *  - Computation Support
  40.  *  - Function Analysis
  41.  *  - Model Validation
  42.  *  - Numerical Analysis
  43.  *  - Numerical Optimizer
  44.  *  - Spline Builder
  45.  *  - Statistical Learning
  46.  *
  47.  *  Documentation for DROP is Spread Over:
  48.  *
  49.  *  - Main                     => https://lakshmidrip.github.io/DROP/
  50.  *  - Wiki                     => https://github.com/lakshmiDRIP/DROP/wiki
  51.  *  - GitHub                   => https://github.com/lakshmiDRIP/DROP
  52.  *  - Repo Layout Taxonomy     => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
  53.  *  - Javadoc                  => https://lakshmidrip.github.io/DROP/Javadoc/index.html
  54.  *  - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
  55.  *  - Release Versions         => https://lakshmidrip.github.io/DROP/version.html
  56.  *  - Community Credits        => https://lakshmidrip.github.io/DROP/credits.html
  57.  *  - Issues Catalog           => https://github.com/lakshmiDRIP/DROP/issues
  58.  *  - JUnit                    => https://lakshmidrip.github.io/DROP/junit/index.html
  59.  *  - Jacoco                   => https://lakshmidrip.github.io/DROP/jacoco/index.html
  60.  *
  61.  *  Licensed under the Apache License, Version 2.0 (the "License");
  62.  *      you may not use this file except in compliance with the License.
  63.  *  
  64.  *  You may obtain a copy of the License at
  65.  *      http://www.apache.org/licenses/LICENSE-2.0
  66.  *  
  67.  *  Unless required by applicable law or agreed to in writing, software
  68.  *      distributed under the License is distributed on an "AS IS" BASIS,
  69.  *      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  70.  *  
  71.  *  See the License for the specific language governing permissions and
  72.  *      limitations under the License.
  73.  */

  74. /**
  75.  * <i>R1UnivariateUniform</i> implements the Univariate R<sup>1</sup> Uniform Distribution. It implements the
  76.  *  Incremental, the Cumulative, and the Inverse Cumulative Distribution Densities.
  77.  *
  78.  *  <br><br>
  79.  *  <ul>
  80.  *      <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
  81.  *      <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalAnalysisLibrary.md">Numerical Analysis Library</a></li>
  82.  *      <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/README.md">R<sup>d</sup> Continuous/Discrete Probability Measures</a></li>
  83.  *      <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/continuous/README.md">R<sup>1</sup> and R<sup>d</sup> Continuous Random Measure</a></li>
  84.  *  </ul>
  85.  *
  86.  * @author Lakshmi Krishnamurthy
  87.  */

  88. public class R1UnivariateUniform extends org.drip.measure.continuous.R1Univariate
  89. {
  90.     private double _leftSupport = java.lang.Double.NaN;
  91.     private double _rightSupport = java.lang.Double.NaN;

  92.     /**
  93.      * Construct a Standard (0, 1) R<sup>1</sup> Univariate Uniform Distribution
  94.      *
  95.      * @return Standard (0, 1) R<sup>1</sup> Univariate Uniform Distribution
  96.      */

  97.     public static final R1UnivariateUniform Standard()
  98.     {
  99.         try
  100.         {
  101.             return new R1UnivariateUniform (
  102.                 0.,
  103.                 1.
  104.             );
  105.         }
  106.         catch (java.lang.Exception e)
  107.         {
  108.             e.printStackTrace();
  109.         }

  110.         return null;
  111.     }

  112.     /**
  113.      * R1UnivariateUniform Constructor
  114.      *
  115.      * @param leftSupport The Left Support
  116.      * @param rightSupport The Right Support
  117.      *
  118.      * @throws java.lang.Exception Thrown if the Inputs are Invalid
  119.      */

  120.     public R1UnivariateUniform (
  121.         final double leftSupport,
  122.         final double rightSupport)
  123.         throws java.lang.Exception
  124.     {
  125.         if (!org.drip.numerical.common.NumberUtil.IsValid (_leftSupport = leftSupport) ||
  126.             !org.drip.numerical.common.NumberUtil.IsValid (_rightSupport = rightSupport) ||
  127.             _leftSupport >= _rightSupport)
  128.         {
  129.             throw new java.lang.Exception ("R1UnivariateUniform Constructor => Invalid Inputs");
  130.         }
  131.     }

  132.     /**
  133.      * Retrieve the Left Support
  134.      *
  135.      * @return The Left Support
  136.      */

  137.     public double leftSupport()
  138.     {
  139.         return _leftSupport;
  140.     }

  141.     /**
  142.      * Retrieve the Right Support
  143.      *
  144.      * @return The Right Support
  145.      */

  146.     public double rightSupport()
  147.     {
  148.         return _rightSupport;
  149.     }

  150.     /**
  151.      * Indicate if the specified x Value stays inside the Support
  152.      *
  153.      * @param x X
  154.      *
  155.      * @return The Value stays in Support
  156.      */

  157.     public boolean supported (
  158.         final double x)
  159.     {
  160.         return org.drip.numerical.common.NumberUtil.IsValid (x) && x >= _leftSupport || x <= _rightSupport;        
  161.     }

  162.     @Override public double[] support()
  163.     {
  164.         return new double[]
  165.         {
  166.             _leftSupport,
  167.             _rightSupport
  168.         };
  169.     }

  170.     @Override public double cumulative (
  171.         final double x)
  172.         throws java.lang.Exception
  173.     {
  174.         if (!supported (x))
  175.             throw new java.lang.Exception ("R1UnivariateUniform::cumulative => Invalid Inputs");

  176.         return  (x - _leftSupport) / (_rightSupport - _leftSupport);
  177.     }

  178.     @Override public double incremental (
  179.         final double xLeft,
  180.         final double xRight)
  181.         throws java.lang.Exception
  182.     {
  183.         return cumulative (xLeft) - cumulative (xRight);
  184.     }

  185.     @Override public double invCumulative (
  186.         final double y)
  187.         throws java.lang.Exception
  188.     {
  189.         if (!org.drip.numerical.common.NumberUtil.IsValid (y) || 1. < y || 0. > y)
  190.             throw new java.lang.Exception ("R1UnivariateUniform::invCumulative => Cannot calculate");

  191.         return y * (_rightSupport - _leftSupport) + _leftSupport;
  192.     }

  193.     @Override public double density (
  194.         final double x)
  195.         throws java.lang.Exception
  196.     {
  197.         if (!supported (x)) throw new java.lang.Exception ("R1UnivariateUniform::density => Invalid Inputs");

  198.         return 1. / (_rightSupport - _leftSupport);
  199.     }

  200.     @Override public double mean()
  201.     {
  202.         return 0.5 * (_rightSupport + _leftSupport);
  203.     }

  204.     @Override public double variance()
  205.     {
  206.         double support = _rightSupport - _leftSupport;
  207.         return support * support / 12.;
  208.     }

  209.     @Override public double random()
  210.     {
  211.         return java.lang.Math.random() * (_rightSupport - _leftSupport) + _leftSupport;
  212.     }

  213.     @Override public org.drip.numerical.common.Array2D histogram()
  214.     {
  215.         return null;
  216.     }
  217. }