CorrelatedPathVertexDimension.java
- package org.drip.measure.discrete;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2020 Lakshmi Krishnamurthy
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- * Copyright (C) 2018 Lakshmi Krishnamurthy
- * Copyright (C) 2017 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
- * asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
- * analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
- * equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
- * numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
- * and computational support.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three modules:
- *
- * - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
- *
- * DROP Product Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Loan Analytics
- * - Transaction Cost Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Asset Liability Management Analytics
- * - Capital Estimation Analytics
- * - Exposure Analytics
- * - Margin Analytics
- * - XVA Analytics
- *
- * DROP Computational Core implements libraries for the following:
- * - Algorithm Support
- * - Computation Support
- * - Function Analysis
- * - Model Validation
- * - Numerical Analysis
- * - Numerical Optimizer
- * - Spline Builder
- * - Statistical Learning
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>CorrelatedPathVertexDimension</i> generates Correlated R^d Random Numbers at the specified Vertexes,
- * over the Specified Paths.
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalAnalysisLibrary.md">Numerical Analysis Library</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/README.md">R<sup>d</sup> Continuous/Discrete Probability Measures</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/discrete/README.md">Antithetic, Quadratically Re-sampled, De-biased Distribution</a></li>
- * </ul>
- *
- * @author Lakshmi Krishnamurthy
- */
- public class CorrelatedPathVertexDimension {
- private int _iNumPath = -1;
- private int _iNumVertex = -1;
- private double[][] _aadblCholesky = null;
- private boolean _bApplyAntithetic = false;
- private double[][] _aadblCorrelation = null;
- private org.drip.measure.crng.RandomNumberGenerator _rng = null;
- private org.drip.measure.discrete.QuadraticResampler _qr = null;
- /**
- * CorrelatedPathVertexDimension Constructor
- *
- * @param rng The Random Number Generator
- * @param aadblCorrelation The Correlation Matrix
- * @param iNumVertex Number of Vertexes
- * @param iNumPath Number of Paths
- * @param bApplyAntithetic TRUE - Apply Antithetic Variables Based Variance Reduction
- * @param qr Quadratic Resampler Instance
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public CorrelatedPathVertexDimension (
- final org.drip.measure.crng.RandomNumberGenerator rng,
- final double[][] aadblCorrelation,
- final int iNumVertex,
- final int iNumPath,
- final boolean bApplyAntithetic,
- final org.drip.measure.discrete.QuadraticResampler qr)
- throws java.lang.Exception
- {
- if (null == (_rng = rng) || 0 >= (_iNumVertex = iNumVertex) || 0 >= (_iNumPath = iNumPath))
- throw new java.lang.Exception ("CorrelatedPathVertexDimension Constructor => Invalid Inputs");
- _qr = qr;
- _bApplyAntithetic = bApplyAntithetic;
- if (null == (_aadblCholesky = org.drip.numerical.linearalgebra.Matrix.CholeskyBanachiewiczFactorization
- (_aadblCorrelation = aadblCorrelation)))
- throw new java.lang.Exception ("CorrelatedPathVertexDimension Constructor => Invalid Inputs");
- }
- /**
- * Retrieve the Random Number Generator
- *
- * @return The Random Number Generator Instance
- */
- public org.drip.measure.crng.RandomNumberGenerator randomNumberGenerator()
- {
- return _rng;
- }
- /**
- * Retrieve the Correlation Matrix
- *
- * @return The Correlation Matrix
- */
- public double[][] correlation()
- {
- return _aadblCorrelation;
- }
- /**
- * Retrieve the Cholesky Matrix
- *
- * @return The Cholesky Matrix
- */
- public double[][] cholesky()
- {
- return _aadblCholesky;
- }
- /**
- * Retrieve the Number of Vertexes
- *
- * @return The Number of Vertexes
- */
- public int numVertex()
- {
- return _iNumVertex;
- }
- /**
- * Retrieve the Number of Paths
- *
- * @return The Number of Paths
- */
- public int numPath()
- {
- return _iNumPath;
- }
- /**
- * Retrieve the Number of Dimensions
- *
- * @return The Number of Dimensions
- */
- public int numDimension()
- {
- return _aadblCholesky.length;
- }
- /**
- * Indicate if the Antithetic Variable Generation is to be applied
- *
- * @return TRUE - Apply Antithetic Variables Based Variance Reduction
- */
- public boolean applyAntithetic()
- {
- return _bApplyAntithetic;
- }
- /**
- * Retrieve the Quadratic Resampler Instance
- *
- * @return The Quadratic Resampler Instance
- */
- public org.drip.measure.discrete.QuadraticResampler quadraticResampler()
- {
- return _qr;
- }
- /**
- * Generate a Straight Single R^d Vertex Realization
- *
- * @return Straight Single R^d Vertex Realization
- */
- public double[] straightVertexRealization()
- {
- int iDimension = _aadblCholesky.length;
- double[] adblRdCorrelated = new double[iDimension];
- double[] adblRdUncorrelated = new double[iDimension];
- for (int i = 0; i < iDimension; ++i) {
- try {
- adblRdUncorrelated[i] = org.drip.measure.gaussian.NormalQuadrature.InverseCDF
- (_rng.nextDouble01());
- } catch (java.lang.Exception e) {
- e.printStackTrace();
- return null;
- }
- }
- for (int i = 0; i < iDimension; ++i) {
- adblRdCorrelated[i] = 0.;
- for (int j = 0; j < iDimension; ++j)
- adblRdCorrelated[i] += _aadblCholesky[i][j] * adblRdUncorrelated[j];
- }
- return adblRdCorrelated;
- }
- /**
- * Generate an Antithetic R^d Vertex Pair Realization
- *
- * @return Antithetic R^d Vertex Pair Realization
- */
- public double[][] antitheticVertexPairRealization()
- {
- double[] adblStraightVertexRealization = straightVertexRealization();
- int iDimension = _aadblCholesky.length;
- double[] adblAntitheticVertexRealization = new double[iDimension];
- for (int i = 0; i < iDimension; ++i)
- adblAntitheticVertexRealization[i] = -1. * adblStraightVertexRealization[i];
- return new double[][] {adblStraightVertexRealization, adblAntitheticVertexRealization};
- }
- /**
- * Generate a Single Straight Path R^d Vertex Realization
- *
- * @return Single Straight Path R^d Vertex Realization
- */
- public org.drip.measure.discrete.VertexRd straightPathVertexRd()
- {
- org.drip.measure.discrete.VertexRd vertexRealization = new
- org.drip.measure.discrete.VertexRd();
- for (int i = 0; i < _iNumVertex; ++i) {
- if (!vertexRealization.add (i, straightVertexRealization())) return null;
- }
- return null != _qr ? org.drip.measure.discrete.VertexRd.FromFlatForm (_qr.transform
- (vertexRealization.flatform())) : vertexRealization;
- }
- /**
- * Generate an Antithetic Pair Path R^d Vertex Realizations
- *
- * @return Antithetic Pair Path R^d Vertex Realizations
- */
- public org.drip.measure.discrete.VertexRd[] antitheticPairPathVertexRd()
- {
- org.drip.measure.discrete.VertexRd straightVertexRealization = new
- org.drip.measure.discrete.VertexRd();
- org.drip.measure.discrete.VertexRd antitheticVertexRealization = new
- org.drip.measure.discrete.VertexRd();
- for (int i = 0; i < _iNumVertex; ++i) {
- double[][] aadblStraightAntitheticRealization = antitheticVertexPairRealization();
- if (!straightVertexRealization.add (i, aadblStraightAntitheticRealization[0]) ||
- !antitheticVertexRealization.add (i, aadblStraightAntitheticRealization[1]))
- return null;
- }
- if (null == _qr)
- return new org.drip.measure.discrete.VertexRd[] {straightVertexRealization,
- antitheticVertexRealization};
- return new org.drip.measure.discrete.VertexRd[] {org.drip.measure.discrete.VertexRd.FromFlatForm
- (_qr.transform (straightVertexRealization.flatform())),
- org.drip.measure.discrete.VertexRd.FromFlatForm (_qr.transform
- (antitheticVertexRealization.flatform()))};
- }
- /**
- * Generate Straight Multi-Path R^d Vertex Realizations Array
- *
- * @return Straight Multi-Path R^d Vertex Realizations Array
- */
- public org.drip.measure.discrete.VertexRd[] straightMultiPathVertexRd()
- {
- org.drip.measure.discrete.VertexRd[] aVertexRd = new
- org.drip.measure.discrete.VertexRd[_iNumPath];
- for (int i = 0; i < _iNumPath; ++i) {
- if (null == (aVertexRd[i] = straightPathVertexRd())) return null;
- }
- return aVertexRd;
- }
- /**
- * Generate Antithetic Multi-Path R^d Vertex Realizations Array
- *
- * @return Antithetic Multi-Path R^d Vertex Realizations Array
- */
- public org.drip.measure.discrete.VertexRd[] antitheticMultiPathVertexRd()
- {
- org.drip.measure.discrete.VertexRd[] aVertexRd = new
- org.drip.measure.discrete.VertexRd[_iNumPath];
- int iNumGeneration = _iNumPath / 2;
- for (int i = 0; i < iNumGeneration; ++i) {
- org.drip.measure.discrete.VertexRd[] aAntitheticVertexRd = antitheticPairPathVertexRd();
- if (null == aAntitheticVertexRd || 2 != aAntitheticVertexRd.length) return null;
- if (null == (aVertexRd[i] = aAntitheticVertexRd[0]) || null == (aVertexRd[i + iNumGeneration] =
- aAntitheticVertexRd[1]))
- return null;
- }
- if (1 == (_iNumPath % 2)) aVertexRd[_iNumPath - 1] = straightPathVertexRd();
- return aVertexRd;
- }
- /**
- * Generate Multi-Path R^d Vertex Realizations Array
- *
- * @return Multi-Path R^d Vertex Realizations Array
- */
- public org.drip.measure.discrete.VertexRd[] multiPathVertexRd()
- {
- return _bApplyAntithetic ? antitheticMultiPathVertexRd() : straightMultiPathVertexRd();
- }
- }