PoissonDistribution.java

  1. package org.drip.measure.discrete;

  2. /*
  3.  * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
  4.  */

  5. /*!
  6.  * Copyright (C) 2020 Lakshmi Krishnamurthy
  7.  * Copyright (C) 2019 Lakshmi Krishnamurthy
  8.  * Copyright (C) 2018 Lakshmi Krishnamurthy
  9.  * Copyright (C) 2017 Lakshmi Krishnamurthy
  10.  * Copyright (C) 2016 Lakshmi Krishnamurthy
  11.  * Copyright (C) 2015 Lakshmi Krishnamurthy
  12.  *
  13.  *  This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
  14.  *      asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
  15.  *      analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
  16.  *      equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
  17.  *      numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
  18.  *      and computational support.
  19.  *  
  20.  *      https://lakshmidrip.github.io/DROP/
  21.  *  
  22.  *  DROP is composed of three modules:
  23.  *  
  24.  *  - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
  25.  *  - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
  26.  *  - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
  27.  *
  28.  *  DROP Product Core implements libraries for the following:
  29.  *  - Fixed Income Analytics
  30.  *  - Loan Analytics
  31.  *  - Transaction Cost Analytics
  32.  *
  33.  *  DROP Portfolio Core implements libraries for the following:
  34.  *  - Asset Allocation Analytics
  35.  *  - Asset Liability Management Analytics
  36.  *  - Capital Estimation Analytics
  37.  *  - Exposure Analytics
  38.  *  - Margin Analytics
  39.  *  - XVA Analytics
  40.  *
  41.  *  DROP Computational Core implements libraries for the following:
  42.  *  - Algorithm Support
  43.  *  - Computation Support
  44.  *  - Function Analysis
  45.  *  - Model Validation
  46.  *  - Numerical Analysis
  47.  *  - Numerical Optimizer
  48.  *  - Spline Builder
  49.  *  - Statistical Learning
  50.  *
  51.  *  Documentation for DROP is Spread Over:
  52.  *
  53.  *  - Main                     => https://lakshmidrip.github.io/DROP/
  54.  *  - Wiki                     => https://github.com/lakshmiDRIP/DROP/wiki
  55.  *  - GitHub                   => https://github.com/lakshmiDRIP/DROP
  56.  *  - Repo Layout Taxonomy     => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
  57.  *  - Javadoc                  => https://lakshmidrip.github.io/DROP/Javadoc/index.html
  58.  *  - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
  59.  *  - Release Versions         => https://lakshmidrip.github.io/DROP/version.html
  60.  *  - Community Credits        => https://lakshmidrip.github.io/DROP/credits.html
  61.  *  - Issues Catalog           => https://github.com/lakshmiDRIP/DROP/issues
  62.  *  - JUnit                    => https://lakshmidrip.github.io/DROP/junit/index.html
  63.  *  - Jacoco                   => https://lakshmidrip.github.io/DROP/jacoco/index.html
  64.  *
  65.  *  Licensed under the Apache License, Version 2.0 (the "License");
  66.  *      you may not use this file except in compliance with the License.
  67.  *  
  68.  *  You may obtain a copy of the License at
  69.  *      http://www.apache.org/licenses/LICENSE-2.0
  70.  *  
  71.  *  Unless required by applicable law or agreed to in writing, software
  72.  *      distributed under the License is distributed on an "AS IS" BASIS,
  73.  *      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  74.  *  
  75.  *  See the License for the specific language governing permissions and
  76.  *      limitations under the License.
  77.  */

  78. /**
  79.  * <i>PoissonDistribution</i> implements the Univariate Poisson Distribution using the specified
  80.  * Mean/Variance.
  81.  *
  82.  *  <br><br>
  83.  *  <ul>
  84.  *      <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
  85.  *      <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalAnalysisLibrary.md">Numerical Analysis Library</a></li>
  86.  *      <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/README.md">R<sup>d</sup> Continuous/Discrete Probability Measures</a></li>
  87.  *      <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/discrete/README.md">Antithetic, Quadratically Re-sampled, De-biased Distribution</a></li>
  88.  *  </ul>
  89.  *
  90.  * @author Lakshmi Krishnamurthy
  91.  */

  92. public class PoissonDistribution extends org.drip.measure.continuous.R1Univariate {
  93.     private double _dblLambda = java.lang.Double.NaN;
  94.     private double _dblExponentialLambda = java.lang.Double.NaN;

  95.     /**
  96.      * Construct a PoissonDistribution Instance
  97.      *
  98.      * @param dblLambda Lambda
  99.      *
  100.      * @throws java.lang.Exception Thrown if the inputs are invalid
  101.      */

  102.     public PoissonDistribution (
  103.         final double dblLambda)
  104.         throws java.lang.Exception
  105.     {
  106.         if (!org.drip.numerical.common.NumberUtil.IsValid (_dblLambda = dblLambda) || 0. >= _dblLambda)
  107.             throw new java.lang.Exception ("PoissonDistribution constructor: Invalid inputs");

  108.         _dblExponentialLambda = java.lang.Math.exp (-1. * _dblLambda);
  109.     }

  110.     /**
  111.      * Retrieve Lambda
  112.      *
  113.      * @return Lambda
  114.      */

  115.     public double lambda()
  116.     {
  117.         return _dblLambda;
  118.     }

  119.     @Override public double[] support()
  120.     {
  121.         return new double[]
  122.         {
  123.             0.,
  124.             java.lang.Double.POSITIVE_INFINITY
  125.         };
  126.     }

  127.     @Override public double cumulative (
  128.         final double dblX)
  129.         throws java.lang.Exception
  130.     {
  131.         if (!org.drip.numerical.common.NumberUtil.IsValid (dblX))
  132.             throw new java.lang.Exception ("PoissonDistribution::cumulative => Invalid inputs");

  133.         int iEnd = (int) dblX;
  134.         double dblYLocal = 1.;
  135.         double dblYCumulative = 0.;

  136.         for (int i = 1; i < iEnd; ++i) {
  137.             i = i + 1;
  138.             dblYLocal *= _dblLambda / i;
  139.             dblYCumulative += _dblExponentialLambda * dblYLocal;
  140.         }

  141.         return dblYCumulative;
  142.     }

  143.     @Override public double incremental (
  144.         final double dblXLeft,
  145.         final double dblXRight)
  146.         throws java.lang.Exception
  147.     {
  148.         return cumulative (dblXRight) - cumulative (dblXLeft);
  149.     }

  150.     @Override public double invCumulative (
  151.         final double dblY)
  152.         throws java.lang.Exception
  153.     {
  154.         if (!org.drip.numerical.common.NumberUtil.IsValid (dblY))
  155.             throw new java.lang.Exception ("PoissonDistribution::invCumulative => Invalid inputs");

  156.         int i = 0;
  157.         double dblYLocal = 1.;
  158.         double dblYCumulative = 0.;

  159.         while (dblYCumulative < dblY) {
  160.             i = i + 1;
  161.             dblYLocal *= _dblLambda / i;
  162.             dblYCumulative += _dblExponentialLambda * dblYLocal;
  163.         }

  164.         return i - 1;
  165.     }

  166.     @Override public double density (
  167.         final double dblX)
  168.         throws java.lang.Exception
  169.     {
  170.         throw new java.lang.Exception
  171.             ("PoissonDistribution::density => Not available for discrete distributions");
  172.     }

  173.     @Override public double mean()
  174.     {
  175.         return _dblLambda;
  176.     }

  177.     @Override public double variance()
  178.     {
  179.         return _dblLambda;
  180.     }

  181.     @Override public org.drip.numerical.common.Array2D histogram()
  182.     {
  183.         return null;
  184.     }
  185. }