QuadraticResampler.java
- package org.drip.measure.discrete;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2020 Lakshmi Krishnamurthy
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- * Copyright (C) 2018 Lakshmi Krishnamurthy
- * Copyright (C) 2017 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
- * asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
- * analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
- * equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
- * numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
- * and computational support.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three modules:
- *
- * - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
- *
- * DROP Product Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Loan Analytics
- * - Transaction Cost Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Asset Liability Management Analytics
- * - Capital Estimation Analytics
- * - Exposure Analytics
- * - Margin Analytics
- * - XVA Analytics
- *
- * DROP Computational Core implements libraries for the following:
- * - Algorithm Support
- * - Computation Support
- * - Function Analysis
- * - Model Validation
- * - Numerical Analysis
- * - Numerical Optimizer
- * - Spline Builder
- * - Statistical Learning
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>QuadraticResampler</i> Quadratically Re-samples the Input Points to Convert it to a Standard Normal.
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalAnalysisLibrary.md">Numerical Analysis Library</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/README.md">R<sup>d</sup> Continuous/Discrete Probability Measures</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/discrete/README.md">Antithetic, Quadratically Re-sampled, De-biased Distribution</a></li>
- * </ul>
- *
- * @author Lakshmi Krishnamurthy
- */
- public class QuadraticResampler {
- private boolean _bDebias = false;
- private boolean _bMeanCenter = false;
- /**
- * QuadraticResampler Constructor
- *
- * @param bMeanCenter TRUE - The Sequence is to be Mean Centered
- * @param bDebias TRUE - Remove the Sampling Bias
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public QuadraticResampler (
- final boolean bMeanCenter,
- final boolean bDebias)
- throws java.lang.Exception
- {
- _bDebias = bDebias;
- _bMeanCenter = bMeanCenter;
- }
- /**
- * Indicate if the Sequence is to be Mean Centered
- *
- * @return TRUE - The Sequence is to be Mean Centered
- */
- public boolean meanCenter()
- {
- return _bMeanCenter;
- }
- /**
- * Indicate if the Sampling Bias needs to be Removed
- *
- * @return TRUE - The Sampling Bias needs to be Removed
- */
- public boolean debias()
- {
- return _bDebias;
- }
- /**
- * Transform the Input R^1 Sequence by applying Quadratic Sampling
- *
- * @param adblSequence The Input R^1 Sequence
- *
- * @return The Transformed Sequence
- */
- public double[] transform (
- final double[] adblSequence)
- {
- if (null == adblSequence) return null;
- double dblMean = 0.;
- double dblVariance = 0.;
- int iSequenceSize = adblSequence.length;
- double[] adblTransfomedSequence = 0 == iSequenceSize ? null : new double[iSequenceSize];
- if (0 == iSequenceSize) return null;
- if (_bMeanCenter) {
- for (int i = 0; i < iSequenceSize; ++i)
- dblMean += adblSequence[i];
- dblMean = dblMean / iSequenceSize;
- }
- for (int i = 0; i < iSequenceSize; ++i) {
- double dblOffset = adblSequence[i] - dblMean;
- dblVariance += dblOffset * dblOffset;
- }
- double dblStandardDeviation = java.lang.Math.sqrt (dblVariance / (_bDebias ? iSequenceSize - 1 :
- iSequenceSize));
- for (int i = 0; i < iSequenceSize; ++i)
- adblTransfomedSequence[i] = adblSequence[i] / dblStandardDeviation;
- return adblTransfomedSequence;
- }
- /**
- * Transform the Input R^d Sequence by applying Quadratic Sampling
- *
- * @param aadblSequence The Input R^d Sequence
- *
- * @return The Transformed Sequence
- */
- public double[][] transform (
- final double[][] aadblSequence)
- {
- double[][] aadblFlippedSequence = org.drip.numerical.linearalgebra.Matrix.Transpose (aadblSequence);
- if (null == aadblFlippedSequence) return null;
- int iDimension = aadblFlippedSequence.length;
- double[][] aadblFlippedTransformedSequence = new double[iDimension][];
- for (int i = 0; i < iDimension; ++i)
- aadblFlippedTransformedSequence[i] = transform (aadblFlippedSequence[i]);
-
- return org.drip.numerical.linearalgebra.Matrix.Transpose (aadblFlippedTransformedSequence);
- }
- }