QuadraticResampler.java

  1. package org.drip.measure.discrete;

  2. /*
  3.  * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
  4.  */

  5. /*!
  6.  * Copyright (C) 2020 Lakshmi Krishnamurthy
  7.  * Copyright (C) 2019 Lakshmi Krishnamurthy
  8.  * Copyright (C) 2018 Lakshmi Krishnamurthy
  9.  * Copyright (C) 2017 Lakshmi Krishnamurthy
  10.  *
  11.  *  This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
  12.  *      asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
  13.  *      analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
  14.  *      equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
  15.  *      numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
  16.  *      and computational support.
  17.  *  
  18.  *      https://lakshmidrip.github.io/DROP/
  19.  *  
  20.  *  DROP is composed of three modules:
  21.  *  
  22.  *  - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
  23.  *  - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
  24.  *  - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
  25.  *
  26.  *  DROP Product Core implements libraries for the following:
  27.  *  - Fixed Income Analytics
  28.  *  - Loan Analytics
  29.  *  - Transaction Cost Analytics
  30.  *
  31.  *  DROP Portfolio Core implements libraries for the following:
  32.  *  - Asset Allocation Analytics
  33.  *  - Asset Liability Management Analytics
  34.  *  - Capital Estimation Analytics
  35.  *  - Exposure Analytics
  36.  *  - Margin Analytics
  37.  *  - XVA Analytics
  38.  *
  39.  *  DROP Computational Core implements libraries for the following:
  40.  *  - Algorithm Support
  41.  *  - Computation Support
  42.  *  - Function Analysis
  43.  *  - Model Validation
  44.  *  - Numerical Analysis
  45.  *  - Numerical Optimizer
  46.  *  - Spline Builder
  47.  *  - Statistical Learning
  48.  *
  49.  *  Documentation for DROP is Spread Over:
  50.  *
  51.  *  - Main                     => https://lakshmidrip.github.io/DROP/
  52.  *  - Wiki                     => https://github.com/lakshmiDRIP/DROP/wiki
  53.  *  - GitHub                   => https://github.com/lakshmiDRIP/DROP
  54.  *  - Repo Layout Taxonomy     => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
  55.  *  - Javadoc                  => https://lakshmidrip.github.io/DROP/Javadoc/index.html
  56.  *  - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
  57.  *  - Release Versions         => https://lakshmidrip.github.io/DROP/version.html
  58.  *  - Community Credits        => https://lakshmidrip.github.io/DROP/credits.html
  59.  *  - Issues Catalog           => https://github.com/lakshmiDRIP/DROP/issues
  60.  *  - JUnit                    => https://lakshmidrip.github.io/DROP/junit/index.html
  61.  *  - Jacoco                   => https://lakshmidrip.github.io/DROP/jacoco/index.html
  62.  *
  63.  *  Licensed under the Apache License, Version 2.0 (the "License");
  64.  *      you may not use this file except in compliance with the License.
  65.  *  
  66.  *  You may obtain a copy of the License at
  67.  *      http://www.apache.org/licenses/LICENSE-2.0
  68.  *  
  69.  *  Unless required by applicable law or agreed to in writing, software
  70.  *      distributed under the License is distributed on an "AS IS" BASIS,
  71.  *      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  72.  *  
  73.  *  See the License for the specific language governing permissions and
  74.  *      limitations under the License.
  75.  */

  76. /**
  77.  * <i>QuadraticResampler</i> Quadratically Re-samples the Input Points to Convert it to a Standard Normal.
  78.  *
  79.  *  <br><br>
  80.  *  <ul>
  81.  *      <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
  82.  *      <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalAnalysisLibrary.md">Numerical Analysis Library</a></li>
  83.  *      <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/README.md">R<sup>d</sup> Continuous/Discrete Probability Measures</a></li>
  84.  *      <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/discrete/README.md">Antithetic, Quadratically Re-sampled, De-biased Distribution</a></li>
  85.  *  </ul>
  86.  *
  87.  * @author Lakshmi Krishnamurthy
  88.  */

  89. public class QuadraticResampler {
  90.     private boolean _bDebias = false;
  91.     private boolean _bMeanCenter = false;

  92.     /**
  93.      * QuadraticResampler Constructor
  94.      *
  95.      * @param bMeanCenter TRUE - The Sequence is to be Mean Centered
  96.      * @param bDebias TRUE - Remove the Sampling Bias
  97.      *
  98.      * @throws java.lang.Exception Thrown if the Inputs are Invalid
  99.      */

  100.     public QuadraticResampler (
  101.         final boolean bMeanCenter,
  102.         final boolean bDebias)
  103.         throws java.lang.Exception
  104.     {
  105.         _bDebias = bDebias;
  106.         _bMeanCenter = bMeanCenter;
  107.     }

  108.     /**
  109.      * Indicate if the Sequence is to be Mean Centered
  110.      *
  111.      * @return TRUE - The Sequence is to be Mean Centered
  112.      */

  113.     public boolean meanCenter()
  114.     {
  115.         return _bMeanCenter;
  116.     }

  117.     /**
  118.      * Indicate if the Sampling Bias needs to be Removed
  119.      *
  120.      * @return TRUE - The Sampling Bias needs to be Removed
  121.      */

  122.     public boolean debias()
  123.     {
  124.         return _bDebias;
  125.     }

  126.     /**
  127.      * Transform the Input R^1 Sequence by applying Quadratic Sampling
  128.      *
  129.      * @param adblSequence The Input R^1 Sequence
  130.      *
  131.      * @return The Transformed Sequence
  132.      */

  133.     public double[] transform (
  134.         final double[] adblSequence)
  135.     {
  136.         if (null == adblSequence) return null;

  137.         double dblMean = 0.;
  138.         double dblVariance = 0.;
  139.         int iSequenceSize = adblSequence.length;
  140.         double[] adblTransfomedSequence = 0 == iSequenceSize ? null : new double[iSequenceSize];

  141.         if (0 == iSequenceSize) return null;

  142.         if (_bMeanCenter) {
  143.             for (int i = 0; i < iSequenceSize; ++i)
  144.                 dblMean += adblSequence[i];

  145.             dblMean = dblMean / iSequenceSize;
  146.         }

  147.         for (int i = 0; i < iSequenceSize; ++i) {
  148.             double dblOffset = adblSequence[i] - dblMean;
  149.             dblVariance += dblOffset * dblOffset;
  150.         }

  151.         double dblStandardDeviation = java.lang.Math.sqrt (dblVariance / (_bDebias ? iSequenceSize - 1 :
  152.             iSequenceSize));

  153.         for (int i = 0; i < iSequenceSize; ++i)
  154.             adblTransfomedSequence[i] = adblSequence[i] / dblStandardDeviation;

  155.         return adblTransfomedSequence;
  156.     }

  157.     /**
  158.      * Transform the Input R^d Sequence by applying Quadratic Sampling
  159.      *
  160.      * @param aadblSequence The Input R^d Sequence
  161.      *
  162.      * @return The Transformed Sequence
  163.      */

  164.     public double[][] transform (
  165.         final double[][] aadblSequence)
  166.     {
  167.         double[][] aadblFlippedSequence = org.drip.numerical.linearalgebra.Matrix.Transpose (aadblSequence);

  168.         if (null == aadblFlippedSequence) return null;

  169.         int iDimension = aadblFlippedSequence.length;
  170.         double[][] aadblFlippedTransformedSequence = new double[iDimension][];

  171.         for (int i = 0; i < iDimension; ++i)
  172.             aadblFlippedTransformedSequence[i] = transform (aadblFlippedSequence[i]);
  173.        
  174.         return org.drip.numerical.linearalgebra.Matrix.Transpose (aadblFlippedTransformedSequence);
  175.     }
  176. }