SequenceGenerator.java
- package org.drip.measure.discrete;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2020 Lakshmi Krishnamurthy
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- * Copyright (C) 2018 Lakshmi Krishnamurthy
- * Copyright (C) 2017 Lakshmi Krishnamurthy
- * Copyright (C) 2016 Lakshmi Krishnamurthy
- * Copyright (C) 2015 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
- * asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
- * analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
- * equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
- * numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
- * and computational support.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three modules:
- *
- * - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
- *
- * DROP Product Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Loan Analytics
- * - Transaction Cost Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Asset Liability Management Analytics
- * - Capital Estimation Analytics
- * - Exposure Analytics
- * - Margin Analytics
- * - XVA Analytics
- *
- * DROP Computational Core implements libraries for the following:
- * - Algorithm Support
- * - Computation Support
- * - Function Analysis
- * - Model Validation
- * - Numerical Analysis
- * - Numerical Optimizer
- * - Spline Builder
- * - Statistical Learning
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>SequenceGenerator</i> generates the specified Univariate Sequence of the Given Distribution Type.
- *
- * <br><br>
- * <ul>
- * <li>
- * Backstrom, T., and J. Fischer (2018): Fast Randomization for Distributed Low Bit-rate Coding of
- * Speech and Audio <i>IEEE/ACM Transactions on Audio, Speech, and Language Processing</i> <b>26
- * (1)</b> 19-30
- * </li>
- * <li>
- * Chi-Squared Distribution (2019): Chi-Squared Function
- * https://en.wikipedia.org/wiki/Chi-squared_distribution
- * </li>
- * <li>
- * Johnson, N. L., S. Klotz, and N. Balakrishnan (1994): <i>Continuous Univariate Distributions
- * <b>1</b> 2<sup>nd</sup> Edition</i> <b>John Wiley and Sons</b>
- * </li>
- * <li>
- * Lancaster, H, O. (1969): <i>The Chi-Squared Distribution</i> <b>Wiley</b>
- * </li>
- * <li>
- * Pillai, N. S. (1026): An Unexpected Encounter with Cauchy and Levy <i>Annals of Statistics</i>
- * <b>44 (5)</b> 2089-2097
- * </li>
- * </ul>
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalAnalysisLibrary.md">Numerical Analysis Library</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/README.md">R<sup>d</sup> Continuous/Discrete Probability Measures</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/discrete/README.md">Antithetic, Quadratically Re-sampled, De-biased Distribution</a></li>
- * </ul>
- *
- * @author Lakshmi Krishnamurthy
- */
- public class SequenceGenerator
- {
- /**
- * Generate a Sequence of Uniform Random Numbers
- *
- * @param iCount The Count in the Sequence
- *
- * @return The Sequence of Uniform Random Numbers
- */
- public static final double[] Uniform (
- final int iCount)
- {
- if (0 >= iCount) return null;
- double[] adblRandom = new double[iCount];
- for (int i = 0; i < iCount; ++i)
- adblRandom[i] = java.lang.Math.random();
- return adblRandom;
- }
- /**
- * Generate a Sequence of Gaussian Random Numbers
- *
- * @param iCount The Count in the Sequence
- *
- * @return The Sequence of Gaussian Random Numbers
- */
- public static final double[] Gaussian (
- final int iCount)
- {
- if (0 >= iCount) return null;
- double[] adblRandom = new double[iCount];
- for (int i = 0; i < iCount; ++i) {
- try {
- adblRandom[i] = org.drip.measure.gaussian.NormalQuadrature.Random();
- } catch (java.lang.Exception e) {
- e.printStackTrace();
- return null;
- }
- }
- return adblRandom;
- }
- /**
- * Generate a Sequence of Log Normal Random Numbers
- *
- * @param iCount The Count in the Sequence
- *
- * @return The Sequence of Log Normal Random Numbers
- */
- public static final double[] LogNormal (
- final int iCount)
- {
- if (0 >= iCount) return null;
- double[] adblRandom = new double[iCount];
- double dblNormalizer = 1. / java.lang.Math.sqrt (java.lang.Math.E);
- for (int i = 0; i < iCount; ++i) {
- try {
- adblRandom[i] = java.lang.Math.exp (org.drip.measure.gaussian.NormalQuadrature.Random()) *
- dblNormalizer;
- } catch (java.lang.Exception e) {
- e.printStackTrace();
- return null;
- }
- }
- return adblRandom;
- }
- /**
- * Generate a Sequence of R^d Correlated Gaussian Random Numbers
- *
- * @param iCount The Count in the Sequence
- * @param aadblCorrelation The Correlation Matrix
- *
- * @return The Sequence of R^d Correlated Gaussian Random Numbers
- */
- public static final double[][] GaussianJoint (
- final int iCount,
- final double[][] aadblCorrelation)
- {
- if (0 >= iCount) return null;
- double[][] aadblCholesky = org.drip.numerical.linearalgebra.Matrix.CholeskyBanachiewiczFactorization
- (aadblCorrelation);
- if (null == aadblCholesky) return null;
- int iDimension = aadblCholesky.length;
- double[][] aadblRandom = new double[iCount][];
- for (int k = 0; k < iCount; ++k) {
- double[] adblUncorrelatedRandom = Gaussian (iDimension);
- if (null == adblUncorrelatedRandom || iDimension != adblUncorrelatedRandom.length) return null;
- double[] adblCorrelatedRandom = new double[iDimension];
- for (int i = 0; i < iDimension; ++i) {
- adblCorrelatedRandom[i] = 0.;
- for (int j = 0; j < iDimension; ++j)
- adblCorrelatedRandom[i] += aadblCholesky[i][j] * adblUncorrelatedRandom[j];
- }
- aadblRandom[k] = adblCorrelatedRandom;
- }
- return aadblRandom;
- }
- /**
- * Generate an Array of Chi-Squared Distributed Random Numbers
- *
- * @param count Array Count
- * @param degreesOfFreedom Degrees of Freedom
- *
- * @return Array of Chi-Squared Distributed Random Numbers
- */
- public static final double[] ChiSquared (
- final int count,
- final int degreesOfFreedom)
- {
- if (0 >= degreesOfFreedom)
- {
- return null;
- }
- double[] chiSquaredArray = new double[count];
- for (int index = 0; index < count; ++index)
- {
- double sumOfStandardNormalSquares = 0.;
- for (int drawIndex = 0; drawIndex < degreesOfFreedom; ++drawIndex)
- {
- try
- {
- double randomStandardNormal = org.drip.measure.gaussian.NormalQuadrature.InverseCDF
- (java.lang.Math.random());
- sumOfStandardNormalSquares = sumOfStandardNormalSquares +
- randomStandardNormal * randomStandardNormal;
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- return null;
- }
- }
- chiSquaredArray[index] = sumOfStandardNormalSquares;
- }
- return chiSquaredArray;
- }
- /**
- * Generate an Array of Scaled Gamma Distributed Random Numbers
- *
- * @param count Array Count
- * @param degreesOfFreedom Degrees of Freedom
- * @param scale Scale Parameter
- *
- * @return Array of Scaled Gamma Distributed Random Numbers
- */
- public static final double[] ScaledGamma (
- final int count,
- final int degreesOfFreedom,
- final double scale)
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (scale) || 0. >= scale)
- {
- return null;
- }
- double[] chiSquaredArray = ChiSquared (
- count,
- degreesOfFreedom
- );
- if (null == chiSquaredArray)
- {
- return null;
- }
- double[] scaledGammaArray = new double[count];
- for (int index = 0; index < count; ++index)
- {
- scaledGammaArray[index] = scale * chiSquaredArray[index];
- }
- return scaledGammaArray;
- }
- /**
- * Generate an Array of Chi Distributed Random Numbers
- *
- * @param count Array Count
- * @param degreesOfFreedom Degrees of Freedom
- *
- * @return Array of Chi Distributed Random Numbers
- */
- public static final double[] Chi (
- final int count,
- final int degreesOfFreedom)
- {
- double[] chiSquaredArray = ChiSquared (
- count,
- degreesOfFreedom
- );
- if (null == chiSquaredArray)
- {
- return null;
- }
- double[] chiArray = new double[count];
- for (int index = 0; index < count; ++index)
- {
- chiArray[index] = java.lang.Math.sqrt (chiSquaredArray[index]);
- }
- return chiArray;
- }
- /**
- * Generate an Array of Unit Scale Rayleigh Distributed Random Numbers
- *
- * @param count Array Count
- *
- * @return Array of Unit Scale Rayleigh Distributed Random Numbers
- */
- public static final double[] UnitScaleRayleigh (
- final int count)
- {
- double[] chiSquaredArray = ChiSquared (
- count,
- 2
- );
- if (null == chiSquaredArray)
- {
- return null;
- }
- double[] unitScaleRayleighArray = new double[count];
- for (int index = 0; index < count; ++index)
- {
- unitScaleRayleighArray[index] = java.lang.Math.sqrt (chiSquaredArray[index]);
- }
- return unitScaleRayleighArray;
- }
- /**
- * Generate an Array of Unit Scale Maxwell Distributed Random Numbers
- *
- * @param count Array Count
- *
- * @return Array of Unit Scale Maxwell Distributed Random Numbers
- */
- public static final double[] UnitScaleMaxwell (
- final int count)
- {
- double[] chiSquaredArray = ChiSquared (
- count,
- 3
- );
- if (null == chiSquaredArray)
- {
- return null;
- }
- double[] unitScaleMaxwellArray = new double[count];
- for (int index = 0; index < count; ++index)
- {
- unitScaleMaxwellArray[index] = java.lang.Math.sqrt (chiSquaredArray[index]);
- }
- return unitScaleMaxwellArray;
- }
- /**
- * Generate an Array of Inverse Chi-Squared Distributed Random Numbers
- *
- * @param count Array Count
- * @param degreesOfFreedom Degrees of Freedom
- *
- * @return Array of Inverse Chi-Squared Distributed Random Numbers
- */
- public static final double[] InverseChiSquared (
- final int count,
- final int degreesOfFreedom)
- {
- double[] chiSquaredArray = ChiSquared (
- count,
- degreesOfFreedom
- );
- if (null == chiSquaredArray)
- {
- return null;
- }
- double[] inverseChiSquaredArray = new double[count];
- for (int index = 0; index < count; ++index)
- {
- inverseChiSquaredArray[index] = 1. / chiSquaredArray[index];
- }
- return inverseChiSquaredArray;
- }
- /**
- * Generate an Array of Beta Distributed Random Numbers
- *
- * @param count Array Count
- * @param degreesOfFreedom1 Degrees of Freedom #1
- * @param degreesOfFreedom2 Degrees of Freedom #2
- *
- * @return Array of Beta Distributed Random Numbers
- */
- public static final double[] Beta (
- final int count,
- final int degreesOfFreedom1,
- final int degreesOfFreedom2)
- {
- double[] chiSquaredArray1 = ChiSquared (
- count,
- degreesOfFreedom1
- );
- double[] chiSquaredArray2 = ChiSquared (
- count,
- degreesOfFreedom2
- );
- if (null == chiSquaredArray1 || null == chiSquaredArray2)
- {
- return null;
- }
- double[] betaArray = new double[count];
- for (int index = 0; index < count; ++index)
- {
- betaArray[index] = chiSquaredArray1[index] / (chiSquaredArray1[index] + chiSquaredArray2[index]);
- }
- return betaArray;
- }
- /**
- * Generate an Array of F Distributed Random Numbers
- *
- * @param count Array Count
- * @param degreesOfFreedom1 Degrees of Freedom #1
- * @param degreesOfFreedom2 Degrees of Freedom #2
- *
- * @return Array of F Distributed Random Numbers
- */
- public static final double[] F (
- final int count,
- final int degreesOfFreedom1,
- final int degreesOfFreedom2)
- {
- double[] chiSquaredArray1 = ChiSquared (
- count,
- degreesOfFreedom1
- );
- double[] chiSquaredArray2 = ChiSquared (
- count,
- degreesOfFreedom2
- );
- if (null == chiSquaredArray1 || null == chiSquaredArray2)
- {
- return null;
- }
- double[] fArray = new double[count];
- for (int index = 0; index < count; ++index)
- {
- fArray[index] = (chiSquaredArray1[index] * degreesOfFreedom2) /
- (chiSquaredArray2[index] * degreesOfFreedom1);
- }
- return fArray;
- }
- /**
- * Generate a Rank-reduced Chi-Squared Distributed Array
- *
- * @param count Array Count
- * @param covarianceMatrix The Covariance Matrix
- *
- * @return Rank-reduced Chi-Squared Distributed Array
- */
- public static final double[] RankReducedChiSquare (
- final int count,
- final double[][] covarianceMatrix)
- {
- double[] rankReducedChiSquare = new double[count];
- org.drip.measure.gaussian.Covariance covariance = null;
- try
- {
- covariance = new org.drip.measure.gaussian.Covariance (covarianceMatrix);
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- return null;
- }
- double[][] gaussianJointArray = GaussianJoint (
- count,
- covariance.correlationMatrix()
- );
- if (null == gaussianJointArray)
- {
- return null;
- }
- double[][] precisionMatrix = covariance.precisionMatrix();
- for (int index = 0; index < count; ++index)
- {
- try
- {
- rankReducedChiSquare[index] = org.drip.numerical.linearalgebra.Matrix.DotProduct (
- gaussianJointArray[index],
- org.drip.numerical.linearalgebra.Matrix.Product (
- precisionMatrix,
- gaussianJointArray[index]
- )
- );
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- return null;
- }
- }
- return rankReducedChiSquare;
- }
- /**
- * Generate a Pillai (2016) Special Chi-Squared Distributed Array
- *
- * @param count Array Count
- * @param covarianceMatrix The Covariance Matrix
- * @param weightArray Array of Weights
- *
- * @return Pillai (2016) Special Chi-Squared Distributed Array
- */
- public static final double[] PillaiSpecialChiSquare (
- final int count,
- final double[][] covarianceMatrix,
- final double[] weightArray)
- {
- if (!org.drip.numerical.common.NumberUtil.NormalizedPositive (weightArray))
- {
- return null;
- }
- int pillaiVectorSize = weightArray.length;
- double[] pillaiSpecialChiSquare = new double[count];
- org.drip.measure.gaussian.Covariance covariance = null;
- try
- {
- covariance = new org.drip.measure.gaussian.Covariance (covarianceMatrix);
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- return null;
- }
- if (pillaiVectorSize != covarianceMatrix.length)
- {
- return null;
- }
- double[][] gaussianJointArray = GaussianJoint (
- count,
- covariance.correlationMatrix()
- );
- if (null == gaussianJointArray)
- {
- return null;
- }
- for (int index = 0; index < count; ++index)
- {
- double[] pillaiVector = new double[pillaiVectorSize];
- for (int pillaiVectorIndex = 0; pillaiVectorIndex < pillaiVectorSize; ++pillaiVectorIndex)
- {
- pillaiVector[pillaiVectorIndex] = weightArray[pillaiVectorIndex] /
- gaussianJointArray[index][pillaiVectorIndex];
- }
- try
- {
- pillaiSpecialChiSquare[index] = 1. / org.drip.numerical.linearalgebra.Matrix.DotProduct (
- pillaiVector,
- org.drip.numerical.linearalgebra.Matrix.Product (
- covarianceMatrix,
- pillaiVector
- )
- );
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- return null;
- }
- }
- return pillaiSpecialChiSquare;
- }
- }