R1ShapeScaleComposite.java
- package org.drip.measure.gamma;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2020 Lakshmi Krishnamurthy
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
- * asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
- * analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
- * equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
- * numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
- * and computational support.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three modules:
- *
- * - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
- *
- * DROP Product Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Loan Analytics
- * - Transaction Cost Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Asset Liability Management Analytics
- * - Capital Estimation Analytics
- * - Exposure Analytics
- * - Margin Analytics
- * - XVA Analytics
- *
- * DROP Computational Core implements libraries for the following:
- * - Algorithm Support
- * - Computation Support
- * - Function Analysis
- * - Model Validation
- * - Numerical Analysis
- * - Numerical Optimizer
- * - Spline Builder
- * - Statistical Learning
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>R1ShapeScaleComposite</i> implements the Scale-Scale Composite Measures. The References are:
- *
- * <br><br>
- * <ul>
- * <li>
- * Devroye, L. (1986): <i>Non-Uniform Random Variate Generation</i> <b>Springer-Verlag</b> New York
- * </li>
- * <li>
- * Gamma Distribution (2019): Gamma Distribution
- * https://en.wikipedia.org/wiki/Chi-squared_distribution
- * </li>
- * <li>
- * Louzada, F., P. L. Ramos, and E. Ramos (2019): A Note on Bias of Closed-Form Estimators for the
- * Gamma Distribution Derived From Likelihood Equations <i>The American Statistician</i> <b>73
- * (2)</b> 195-199
- * </li>
- * <li>
- * Minka, T. (2002): Estimating a Gamma distribution https://tminka.github.io/papers/minka-gamma.pdf
- * </li>
- * <li>
- * Ye, Z. S., and N. Chen (2017): Closed-Form Estimators for the Gamma Distribution Derived from
- * Likelihood Equations <i>The American Statistician</i> <b>71 (2)</b> 177-181
- * </li>
- * </ul>
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalAnalysisLibrary.md">Numerical Analysis Library</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/README.md">R<sup>d</sup> Continuous/Discrete Probability Measures</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/gamma/README.md">R<sup>1</sup> Gamma Distribution Implementation/Properties</a></li>
- * </ul>
- *
- * @author Lakshmi Krishnamurthy
- */
- public class R1ShapeScaleComposite
- {
- /**
- * Generate a Random Number that follows the F Distribution
- *
- * @param gammaDistribution1 Gamma Distribution #1
- * @param gammaDistribution2 Gamma Distribution #2
- *
- * @return Random Number that follows the F Distribution
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public static final double RandomF (
- final org.drip.measure.gamma.R1ShapeScaleDiscrete gammaDistribution1,
- final org.drip.measure.gamma.R1ShapeScaleDiscrete gammaDistribution2)
- throws java.lang.Exception
- {
- if (null == gammaDistribution1 ||
- null == gammaDistribution2)
- {
- throw new java.lang.Exception (
- "R1ShapeScaleComposite::RandomF => Invalid Inputs"
- );
- }
- org.drip.measure.gamma.ShapeScaleParameters shapeScaleParameters1 =
- gammaDistribution1.shapeScaleParameters();
- org.drip.measure.gamma.ShapeScaleParameters shapeScaleParameters2 =
- gammaDistribution2.shapeScaleParameters();
- return gammaDistribution1.random() / (
- shapeScaleParameters1.shape() * shapeScaleParameters1.scale()
- ) / (gammaDistribution2.random() / (
- shapeScaleParameters2.shape() * shapeScaleParameters2.scale()
- ));
- }
- /**
- * Generate a Random Number that follows the Beta Prime Distribution
- *
- * @param gammaDistribution1 Gamma Distribution #1
- * @param gammaDistribution2 Gamma Distribution #2
- *
- * @return Random Number that follows the Beta Prime Distribution
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public static final double RandomBetaPrime (
- final org.drip.measure.gamma.R1ShapeScaleDiscrete gammaDistribution1,
- final org.drip.measure.gamma.R1ShapeScaleDiscrete gammaDistribution2)
- throws java.lang.Exception
- {
- if (null == gammaDistribution1 ||
- null == gammaDistribution2)
- {
- throw new java.lang.Exception (
- "R1ShapeScaleComposite::RandomBetaPrime => Invalid Inputs"
- );
- }
- return gammaDistribution1.random() / gammaDistribution2.random();
- }
- /**
- * Generate a Random Number that follows the Beta Distribution
- *
- * @param gammaDistribution1 Gamma Distribution #1
- * @param gammaDistribution2 Gamma Distribution #2
- *
- * @return Random Number that follows the Beta Distribution
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public static final double RandomBeta (
- final org.drip.measure.gamma.R1ShapeScaleDiscrete gammaDistribution1,
- final org.drip.measure.gamma.R1ShapeScaleDiscrete gammaDistribution2)
- throws java.lang.Exception
- {
- if (null == gammaDistribution1 ||
- null == gammaDistribution2)
- {
- throw new java.lang.Exception (
- "R1ShapeScaleComposite::RandomBeta => Invalid Inputs"
- );
- }
- double scale = gammaDistribution1.shapeScaleParameters().scale();
- if (scale != gammaDistribution2.shapeScaleParameters().scale())
- {
- throw new java.lang.Exception (
- "R1ShapeScaleComposite::RandomBeta => Invalid Inputs"
- );
- }
- double gammaDistribution1Random = gammaDistribution1.random();
- return gammaDistribution1Random / (gammaDistribution1Random + gammaDistribution2.random());
- }
- /**
- * Generate a Random Vector that follows the Dirichlet Distribution
- *
- * @param gammaDistributionArray Gamma Distribution Array
- *
- * @return Random Vector that follows the Dirichlet Distribution
- */
- public static final double[] RandomDirichletVector (
- final org.drip.measure.gamma.R1ShapeScaleDiscrete[] gammaDistributionArray)
- {
- if (null == gammaDistributionArray)
- {
- return null;
- }
- double dirichletSum = 0.;
- int dirichletVectorCount = gammaDistributionArray.length;
- double[] randomDirichletVector = new double[dirichletVectorCount];
- if (0 == dirichletVectorCount)
- {
- return null;
- }
- for (int dirichletVectorIndex = 0;
- dirichletVectorIndex < dirichletVectorCount;
- ++dirichletVectorIndex)
- {
- if (null == gammaDistributionArray[dirichletVectorIndex] ||
- 1 != gammaDistributionArray[dirichletVectorIndex].shapeScaleParameters().scale())
- {
- return null;
- }
- try
- {
- dirichletSum = dirichletSum + (
- randomDirichletVector[dirichletVectorIndex] =
- gammaDistributionArray[dirichletVectorIndex].random()
- );
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- return null;
- }
- }
- for (int dirichletVectorIndex = 0;
- dirichletVectorIndex < dirichletVectorCount;
- ++dirichletVectorIndex)
- {
- randomDirichletVector[dirichletVectorIndex] = randomDirichletVector[dirichletVectorIndex] /
- dirichletSum;
- }
- return randomDirichletVector;
- }
- /**
- * Compute the Kullback-Liebler Divergence for the Gamma Distribution Pair
- *
- * @param gammaDistribution1 Gamma Distribution #1
- * @param gammaDistribution2 Gamma Distribution #2
- *
- * @return The Kullback-Liebler Divergence for the Gamma Distribution Pair
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public static final double KullbackLieblerDivergence (
- final org.drip.measure.gamma.R1ShapeScaleDistribution gammaDistribution1,
- final org.drip.measure.gamma.R1ShapeScaleDistribution gammaDistribution2)
- throws java.lang.Exception
- {
- if (null == gammaDistribution1 ||
- null == gammaDistribution2)
- {
- throw new java.lang.Exception (
- "R1ShapeScaleComposite::KullbackLieblerDivergence => Invalid Inputs"
- );
- }
- org.drip.measure.gamma.ShapeScaleParameters shapeScaleParameters1 =
- gammaDistribution1.shapeScaleParameters();
- org.drip.measure.gamma.ShapeScaleParameters shapeScaleParameters2 =
- gammaDistribution2.shapeScaleParameters();
- double scale1 = shapeScaleParameters1.scale();
- double scale2 = shapeScaleParameters2.scale();
- double shape1 = shapeScaleParameters1.shape();
- double shape2 = shapeScaleParameters2.shape();
- org.drip.function.definition.R1ToR1 gammaEstimator = gammaDistribution1.gammaEstimator();
- return (shape1 - shape2) * gammaDistribution1.digammaEstimator().evaluate (
- shape1
- ) - gammaEstimator.evaluate (
- shape1
- ) + gammaEstimator.evaluate (
- shape2
- ) + shape2 * (
- java.lang.Math.log (
- scale2
- ) - java.lang.Math.log (
- scale1
- )
- ) + shape1 * (scale1 - scale2) / scale1;
- }
- }