R1ShapeScaleDistribution.java
- package org.drip.measure.gamma;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2020 Lakshmi Krishnamurthy
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
- * asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
- * analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
- * equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
- * numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
- * and computational support.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three modules:
- *
- * - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
- *
- * DROP Product Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Loan Analytics
- * - Transaction Cost Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Asset Liability Management Analytics
- * - Capital Estimation Analytics
- * - Exposure Analytics
- * - Margin Analytics
- * - XVA Analytics
- *
- * DROP Computational Core implements libraries for the following:
- * - Algorithm Support
- * - Computation Support
- * - Function Analysis
- * - Model Validation
- * - Numerical Analysis
- * - Numerical Optimizer
- * - Spline Builder
- * - Statistical Learning
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>R1ShapeScaleDistribution</i> implements the Shape and Scale Parameterization of the R<sup>1</sup> Gamma
- * Distribution. The References are:
- *
- * <br><br>
- * <ul>
- * <li>
- * Devroye, L. (1986): <i>Non-Uniform Random Variate Generation</i> <b>Springer-Verlag</b> New York
- * </li>
- * <li>
- * Gamma Distribution (2019): Gamma Distribution
- * https://en.wikipedia.org/wiki/Chi-squared_distribution
- * </li>
- * <li>
- * Louzada, F., P. L. Ramos, and E. Ramos (2019): A Note on Bias of Closed-Form Estimators for the
- * Gamma Distribution Derived From Likelihood Equations <i>The American Statistician</i> <b>73
- * (2)</b> 195-199
- * </li>
- * <li>
- * Minka, T. (2002): Estimating a Gamma distribution https://tminka.github.io/papers/minka-gamma.pdf
- * </li>
- * <li>
- * Ye, Z. S., and N. Chen (2017): Closed-Form Estimators for the Gamma Distribution Derived from
- * Likelihood Equations <i>The American Statistician</i> <b>71 (2)</b> 177-181
- * </li>
- * </ul>
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalAnalysisLibrary.md">Numerical Analysis Library</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/README.md">R<sup>d</sup> Continuous/Discrete Probability Measures</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/gamma/README.md">R<sup>1</sup> Gamma Distribution Implementation/Properties</a></li>
- * </ul>
- *
- * @author Lakshmi Krishnamurthy
- */
- public class R1ShapeScaleDistribution
- extends org.drip.measure.continuous.R1Univariate
- {
- private double _cdfScaler = java.lang.Double.NaN;
- private double _pdfScaler = java.lang.Double.NaN;
- private org.drip.function.definition.R1ToR1 _gammaEstimator = null;
- private org.drip.function.definition.R1ToR1 _digammaEstimator = null;
- private org.drip.measure.gamma.ShapeScaleParameters _shapeScaleParameters = null;
- private org.drip.function.definition.R2ToR1 _lowerIncompleteGammaEstimator = null;
- /**
- * Construct a Gamma Distribution from Shape and Rate Parameters
- *
- * @param shapeParameter Shape Parameter
- * @param rateParameter Rate Parameter
- * @param gammaEstimator Gamma Estimator
- * @param digammaEstimator Digamma Estimator
- * @param lowerIncompleteGammaEstimator Lower Incomplete Gamma Estimator
- *
- * @return Gamma Distribution from Shape Alpha and Rate Beta Parameters
- */
- public static final R1ShapeScaleDistribution ShapeRate (
- final double shapeParameter,
- final double rateParameter,
- final org.drip.function.definition.R1ToR1 gammaEstimator,
- final org.drip.function.definition.R1ToR1 digammaEstimator,
- final org.drip.function.definition.R2ToR1 lowerIncompleteGammaEstimator)
- {
- return R1ShapeScaleDistribution.Standard (
- shapeParameter,
- 1. / rateParameter,
- gammaEstimator,
- digammaEstimator,
- lowerIncompleteGammaEstimator
- );
- }
- /**
- * Shape Summation Based ShapeScaleDistribution
- *
- * @param shapeParameterArray Shape Parameter Array
- * @param scaleParameter Scale Parameter
- * @param gammaEstimator Gamma Estimator
- * @param digammaEstimator Digamma Estimator
- * @param lowerIncompleteGammaEstimator Lower Incomplete Gamma Estimator
- *
- * @return Shape Summation Based ShapeScaleDistribution
- */
- public static final R1ShapeScaleDistribution ShapeSummation (
- final double[] shapeParameterArray,
- final double scaleParameter,
- final org.drip.function.definition.R1ToR1 gammaEstimator,
- final org.drip.function.definition.R1ToR1 digammaEstimator,
- final org.drip.function.definition.R2ToR1 lowerIncompleteGammaEstimator)
- {
- if (null == shapeParameterArray)
- {
- return null;
- }
- double shapeParameter = 0.;
- int shapeParameterArraySize = shapeParameterArray.length;
- if (0 == shapeParameterArraySize)
- {
- return null;
- }
- for (int shapeParameterIndex = 0;
- shapeParameterIndex < shapeParameterArraySize;
- ++shapeParameterIndex)
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (
- shapeParameterArray[shapeParameterIndex]
- ))
- {
- return null;
- }
- shapeParameter += shapeParameterArray[shapeParameterIndex];
- }
- return R1ShapeScaleDistribution.Standard (
- shapeParameter,
- scaleParameter,
- gammaEstimator,
- digammaEstimator,
- lowerIncompleteGammaEstimator
- );
- }
- /**
- * Construct the Standard R1ShapeScaleDistribution Instance
- *
- * @param shapeParameter Shape Parameter
- * @param scaleParameter Scale Parameter
- * @param gammaEstimator Gamma Estimator
- * @param digammaEstimator Digamma Estimator
- * @param lowerIncompleteGammaEstimator Lower Incomplete Gamma Estimator
- *
- * @return The R1ShapeScaleDistribution Instance
- */
- public static final R1ShapeScaleDistribution Standard (
- final double shapeParameter,
- final double scaleParameter,
- final org.drip.function.definition.R1ToR1 gammaEstimator,
- final org.drip.function.definition.R1ToR1 digammaEstimator,
- final org.drip.function.definition.R2ToR1 lowerIncompleteGammaEstimator)
- {
- try
- {
- return new R1ShapeScaleDistribution (
- new org.drip.measure.gamma.ShapeScaleParameters (
- shapeParameter,
- scaleParameter
- ),
- gammaEstimator,
- digammaEstimator,
- lowerIncompleteGammaEstimator
- );
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- }
- return null;
- }
- private double randomMarsaglia1977 (
- final double shapeParameterIn)
- throws java.lang.Exception
- {
- double shapeParameter = shapeParameterIn < 1. ? shapeParameterIn + 1. : shapeParameterIn;
- double d = shapeParameter - 1. / 3.;
- double v = 0.;
- double u = 0.;
- double c = 1. / java.lang.Math.sqrt (
- 9. * d
- );
- while (true)
- {
- double x = org.drip.measure.gaussian.NormalQuadrature.Random();
- u = java.lang.Math.random();
- v = 1. + c * x;
- v = v * v * v;
- if (v > 0. &&
- 0.5 * x * x + d - d * v + d * java.lang.Math.log (
- v
- ) > java.lang.Math.log (
- u
- )
- )
- {
- double marsagliaRandom =_shapeScaleParameters.scale() * d * v;
- return shapeParameter != shapeParameterIn ?
- marsagliaRandom * java.lang.Math.pow (
- u,
- 1. / shapeParameterIn
- ) : marsagliaRandom;
- }
- }
- }
- /**
- * R1ShapeScaleDistribution Constructor
- *
- * @param shapeScaleParameters Shape-Scale Parameters
- * @param gammaEstimator Gamma Estimator
- * @param digammaEstimator Digamma Estimator
- * @param lowerIncompleteGammaEstimator Lower Incomplete Gamma Estimator
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public R1ShapeScaleDistribution (
- final org.drip.measure.gamma.ShapeScaleParameters shapeScaleParameters,
- final org.drip.function.definition.R1ToR1 gammaEstimator,
- final org.drip.function.definition.R1ToR1 digammaEstimator,
- final org.drip.function.definition.R2ToR1 lowerIncompleteGammaEstimator)
- throws java.lang.Exception
- {
- if (null == (_shapeScaleParameters = shapeScaleParameters) ||
- null == (_gammaEstimator = gammaEstimator) ||
- null == (_digammaEstimator = digammaEstimator) ||
- null == (_lowerIncompleteGammaEstimator = lowerIncompleteGammaEstimator)
- )
- {
- throw new java.lang.Exception (
- "R1ShapeScaleDistribution Constructor => Invalid Inputs"
- );
- }
- double shape = _shapeScaleParameters.shape();
- _pdfScaler = (
- _cdfScaler = 1. / _gammaEstimator.evaluate (
- shape
- )
- ) * java.lang.Math.pow (
- _shapeScaleParameters.scale(),
- -1. * shape
- );
- }
- /**
- * Retrieve the Shape-Scale Parameters
- *
- * @return The Shape-Scale Parameters
- */
- public org.drip.measure.gamma.ShapeScaleParameters shapeScaleParameters()
- {
- return _shapeScaleParameters;
- }
- /**
- * Retrieve the Gamma Estimator
- *
- * @return Gamma Estimator
- */
- public org.drip.function.definition.R1ToR1 gammaEstimator()
- {
- return _gammaEstimator;
- }
- /**
- * Retrieve the Digamma Estimator
- *
- * @return Digamma Estimator
- */
- public org.drip.function.definition.R1ToR1 digammaEstimator()
- {
- return _digammaEstimator;
- }
- /**
- * Retrieve the Lower Incomplete Gamma Estimator
- *
- * @return Lower Incomplete Gamma Estimator
- */
- public org.drip.function.definition.R2ToR1 lowerIncompleteGammaEstimator()
- {
- return _lowerIncompleteGammaEstimator;
- }
- @Override public double[] support()
- {
- return new double[]
- {
- 0.,
- java.lang.Double.POSITIVE_INFINITY
- };
- }
- @Override public double density (
- final double t)
- throws java.lang.Exception
- {
- if (!supported (
- t
- ))
- {
- throw new java.lang.Exception (
- "ShapeScaleDistribution::density => Variate not in Range"
- );
- }
- return _pdfScaler * java.lang.Math.pow (
- t,
- _shapeScaleParameters.shape() - 1.
- ) * java.lang.Math.exp (
- -1. * t / _shapeScaleParameters.scale()
- );
- }
- @Override public double cumulative (
- final double t)
- throws java.lang.Exception
- {
- if (!supported (
- t
- ))
- {
- throw new java.lang.Exception (
- "ShapeScaleDistribution::cumulative => Invalid Inputs"
- );
- }
- return _cdfScaler * _lowerIncompleteGammaEstimator.evaluate (
- _shapeScaleParameters.shape(),
- t / _shapeScaleParameters.scale()
- );
- }
- @Override public double mean()
- throws java.lang.Exception
- {
- return _shapeScaleParameters.shape() * _shapeScaleParameters.scale();
- }
- @Override public double mode()
- throws java.lang.Exception
- {
- double shape = _shapeScaleParameters.shape();
- if (shape < 1.)
- {
- throw new java.lang.Exception (
- "ShapeScaleDistribution::mode => No Closed Form Available"
- );
- }
- return (shape - 1.) * _shapeScaleParameters.scale();
- }
- @Override public double variance()
- throws java.lang.Exception
- {
- double scale = _shapeScaleParameters.scale();
- return _shapeScaleParameters.shape() * scale * scale;
- }
- @Override public double skewness()
- throws java.lang.Exception
- {
- return 2. * java.lang.Math.sqrt (1. / _shapeScaleParameters.shape());
- }
- @Override public double excessKurtosis()
- throws java.lang.Exception
- {
- return 6. / _shapeScaleParameters.shape();
- }
- @Override public double differentialEntropy()
- throws java.lang.Exception
- {
- double shape = _shapeScaleParameters.shape();
- return shape + java.lang.Math.log (
- _shapeScaleParameters.scale() / _cdfScaler
- ) + (1. - shape) * _digammaEstimator.evaluate (
- shape
- );
- }
- @Override public org.drip.function.definition.R1ToR1 momentGeneratingFunction()
- {
- final double scale = _shapeScaleParameters.scale();
- return new org.drip.function.definition.R1ToR1 (
- null
- )
- {
- @Override public double evaluate (
- final double t)
- throws java.lang.Exception
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (
- t
- ) || t >= 1. / scale
- )
- {
- throw new java.lang.Exception (
- "ShapeScaleDistribution::momentGeneratingFunction::evaluate => Invalid Input"
- );
- }
- return java.lang.Math.pow (
- 1. - scale * t,
- -1. * _shapeScaleParameters.shape()
- );
- }
- };
- }
- /**
- * Retrieve the Central Limit Theorem Equivalent Normal Distribution Proxy
- *
- * @return The Central Limit Theorem Equivalent Normal Distribution Proxy
- */
- public org.drip.measure.gaussian.R1UnivariateNormal cltProxy()
- {
- double scale = _shapeScaleParameters.scale();
- double shape = _shapeScaleParameters.shape();
- try
- {
- return new org.drip.measure.gaussian.R1UnivariateNormal (
- shape * scale,
- scale * java.lang.Math.sqrt (
- shape
- )
- );
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Compute the Logarithmic Expectation
- *
- * @return The Logarithmic Expectation
- *
- * @throws java.lang.Exception Thrown if the Logarithmic Expectation cannot be computed
- */
- public double logarithmicExpectation()
- throws java.lang.Exception
- {
- return _digammaEstimator.evaluate (
- _shapeScaleParameters.shape()
- ) - java.lang.Math.log (
- _shapeScaleParameters.scale()
- );
- }
- /**
- * Compute the Banneheke-Ekayanake Approximation for the Median when k gte 1
- *
- * @return The Banneheke-Ekayanake Approximation for the Median
- *
- * @throws java.lang.Exception Thrown if the Median cannot be computed
- */
- public double bannehekeEkayanakeMedianApproximation()
- throws java.lang.Exception
- {
- double shape = _shapeScaleParameters.shape();
- if (1. > shape)
- {
- throw new java.lang.Exception (
- "ShapeScaleDistribution::bannehekeEkayanakeMedianApproximation => Invalid Shape Parameter"
- );
- }
- return (3. * shape - 0.8) / (3. * shape - 0.2) * mean();
- }
- /**
- * Compute the Ramanujan-Choi Approximation for the Median
- *
- * @return The Ramanujan-Choi Approximation for the Median
- */
- public double ramanujanChoiMedianApproximation()
- {
- double shape = _shapeScaleParameters.shape();
- double inverseShapeParameter = 1. / shape;
- return shape - 1. / 3. +
- 8. * inverseShapeParameter / 405. +
- 184. * inverseShapeParameter * inverseShapeParameter / 25515. +
- 2248. * inverseShapeParameter * inverseShapeParameter * inverseShapeParameter / 3444525.;
- }
- /**
- * Compute the Chen-Rubin Median Lower Bound
- *
- * @return The Chen-Rubin Median Lower Bound
- */
- public double chenRubinMedianLowerBound()
- {
- return _shapeScaleParameters.shape() - 1. / 3.;
- }
- /**
- * Compute the Chen-Rubin Median Upper Bound
- *
- * @return The Chen-Rubin Median Upper Bound
- */
- public double chenRubinMedianUpperBound()
- {
- return _shapeScaleParameters.shape();
- }
- /**
- * Generate a Scaled Gamma Distribution
- *
- * @param scaleFactor The Gamma Distribution Scale Factor
- *
- * @return Scaled Gamma Distribution
- */
- public R1ShapeScaleDistribution scale (
- final double scaleFactor)
- {
- try
- {
- return new R1ShapeScaleDistribution (
- new org.drip.measure.gamma.ShapeScaleParameters (
- _shapeScaleParameters.shape(),
- _shapeScaleParameters.scale() * scaleFactor
- ),
- _gammaEstimator,
- _digammaEstimator,
- _lowerIncompleteGammaEstimator
- );
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Retrieve the Array of Natural Parameters
- *
- * @return Array of Natural Parameters
- */
- public double[] naturalParameters()
- {
- return new double[]
- {
- _shapeScaleParameters.shape() - 1,
- -1. / _shapeScaleParameters.scale()
- };
- }
- /**
- * Retrieve the Array of Natural Statistics
- *
- * @param x X
- *
- * @return Array of Natural Statistics
- */
- public double[] naturalStatistics (
- final double x)
- {
- return org.drip.numerical.common.NumberUtil.IsValid (
- x
- ) ? new double[]
- {
- x,
- java.lang.Math.log (
- x
- )
- } : null;
- }
- /**
- * Generate the Exponential Family Representation
- *
- * @param x X
- *
- * @return Exponential Family Representation
- */
- public org.drip.measure.gamma.ExponentialFamilyRepresentation exponentialFamilyRepresentation (
- final double x)
- {
- try
- {
- return new org.drip.measure.gamma.ExponentialFamilyRepresentation (
- naturalParameters(),
- naturalStatistics (
- x
- )
- );
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Compute the Laplacian
- *
- * @param s S
- *
- * @return The Laplacian
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public double laplacian (
- final double s)
- throws java.lang.Exception
- {
- if (0. > s)
- {
- throw new java.lang.Exception (
- "ShapeScaleDistribution::laplacian => Invalid Shape Parameter"
- );
- }
- return java.lang.Math.pow (
- 1. + s * _shapeScaleParameters.scale(),
- -1. * _shapeScaleParameters.shape()
- );
- }
- /**
- * Generate a Random Variable using the Ahrens-Dieter (1982) Scheme
- *
- * @return Random Variable using the Ahrens-Dieter (1982) Scheme
- *
- * @throws java.lang.Exception Thrown if the Random Instance cannot be estimated
- */
- public double randomAhrensDieter1982()
- throws java.lang.Exception
- {
- double shape = _shapeScaleParameters.shape();
- double eta = 0.;
- double random = 0.;
- double epsilon = 0.;
- int k = (int) shape;
- double delta = shape - k;
- for (int index = 0;
- index < k;
- ++index)
- {
- random = random - java.lang.Math.log (
- java.lang.Math.random()
- );
- }
- if (0. == delta)
- {
- return random;
- }
- while (true)
- {
- double u = java.lang.Math.random();
- double v = java.lang.Math.random();
- double w = java.lang.Math.random();
- if (u <= java.lang.Math.E / (java.lang.Math.E + delta))
- {
- epsilon = java.lang.Math.pow (
- v,
- 1. / delta
- );
- eta = w * java.lang.Math.pow (
- epsilon,
- delta - 1.
- );
- }
- else
- {
- epsilon = 1. - java.lang.Math.log (
- v
- );
- eta = w * java.lang.Math.exp (
- -1. * epsilon
- );
- }
- if (eta <= java.lang.Math.pow (
- epsilon,
- delta - 1.
- ) * java.lang.Math.exp (
- -1. * epsilon
- )
- )
- {
- break;
- }
- }
- return _shapeScaleParameters.scale() * (random + epsilon);
- }
- /**
- * Generate a Random Variable using the Marsaglia (1977) Scheme
- *
- * @return Random Variable using the Marsaglia (1977) Scheme
- *
- * @throws java.lang.Exception Thrown if the Random Instance cannot be estimated
- */
- public double randomMarsaglia1977()
- throws java.lang.Exception
- {
- return randomMarsaglia1977 (
- _shapeScaleParameters.shape()
- );
- }
- }