NormalQuadrature.java
- package org.drip.measure.gaussian;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2020 Lakshmi Krishnamurthy
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- * Copyright (C) 2018 Lakshmi Krishnamurthy
- * Copyright (C) 2017 Lakshmi Krishnamurthy
- * Copyright (C) 2016 Lakshmi Krishnamurthy
- * Copyright (C) 2015 Lakshmi Krishnamurthy
- * Copyright (C) 2014 Lakshmi Krishnamurthy
- * Copyright (C) 2011 Robert Sedgewick
- *
- * This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
- * asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
- * analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
- * equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
- * numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
- * and computational support.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three modules:
- *
- * - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
- *
- * DROP Product Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Loan Analytics
- * - Transaction Cost Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Asset Liability Management Analytics
- * - Capital Estimation Analytics
- * - Exposure Analytics
- * - Margin Analytics
- * - XVA Analytics
- *
- * DROP Computational Core implements libraries for the following:
- * - Algorithm Support
- * - Computation Support
- * - Function Analysis
- * - Model Validation
- * - Numerical Analysis
- * - Numerical Optimizer
- * - Spline Builder
- * - Statistical Learning
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>NormalQuadrature</i> implements the Quadrature Metrics behind the Univariate Normal Distribution. It
- * implements the Incremental, the Cumulative, and the Inverse Cumulative Distribution Densities.
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalAnalysisLibrary.md">Numerical Analysis Library</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/README.md">R<sup>d</sup> Continuous/Discrete Probability Measures</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/gaussian/README.md">R<sup>1</sup> R<sup>d</sup> Covariant Gaussian Quadrature</a></li>
- * </ul>
- *
- * @author Robert Sedgewick
- * @author Lakshmi Krishnamurthy
- */
- public class NormalQuadrature {
- private static final double InverseCDF (
- final double dblY,
- final double dblTolerance,
- final double dblLowCutoff,
- final double dblHighCutoff)
- throws java.lang.Exception
- {
- double dblMid = 0.5 * (dblHighCutoff + dblLowCutoff);
- if (dblHighCutoff - dblLowCutoff < dblTolerance) return dblMid;
- return CDF (dblMid) > dblY ? InverseCDF (dblY, dblTolerance, dblLowCutoff, dblMid) : InverseCDF
- (dblY, dblTolerance, dblMid, dblHighCutoff);
- }
- /**
- * Retrieve the Density at the specified Point using Zero Mean and Unit Variance
- *
- * @param dblX The Ordinate
- *
- * @return The Density at the specified Point Zero Mean and Unit Variance
- *
- * @throws java.lang.Exception Thrown if Inputs are Invalid
- */
- public static final double Density (
- final double dblX)
- throws java.lang.Exception
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (dblX))
- throw new java.lang.Exception ("NormalQuadrature::Density => Invalid Inputs");
- return java.lang.Math.exp (-0.5 * dblX * dblX) / java.lang.Math.sqrt (2 * java.lang.Math.PI);
- }
- /**
- * Compute the Cumulative Distribution Function up to the specified Variate
- *
- * @param dblX The Variate
- *
- * @return The Cumulative Distribution Function up to the specified Variate
- *
- * @throws java.lang.Exception thrown if the Inputs are Invalid
- */
- public static final double CDF (
- final double dblX)
- throws java.lang.Exception
- {
- if (java.lang.Double.isNaN (dblX))
- throw new java.lang.Exception ("NormalQuadrature::CDF => Invalid Inputs");
- if (dblX < -8.) return 0.;
- if (dblX > 8.) return 1.;
- double dblSum = 0.;
- double dblTerm = dblX;
- for (int i = 3; dblSum + dblTerm != dblSum; i += 2) {
- dblSum = dblSum + dblTerm;
- dblTerm = dblTerm * dblX * dblX / i;
- }
- return 0.5 + dblSum * Density (dblX);
- }
- /**
- * Compute the Inverse CDF of the Distribution up to the specified Y
- *
- * @param dblY Y
- *
- * @return The Inverse CDF of the Distribution up to the specified Y
- *
- * @throws java.lang.Exception Thrown if Inputs are Invalid
- */
- public static final double InverseCDF (
- final double dblY)
- throws java.lang.Exception
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (dblY))
- throw new java.lang.Exception ("NormalQuadrature::InverseCDF => Invalid Inputs");
- return InverseCDF (dblY, .00000001, -8., 8.);
- }
- /**
- * Compute the Probit of the Distribution up to the specified p
- *
- * @param p p
- *
- * @return The Probit of the Distribution up to the specified p
- *
- * @throws java.lang.Exception Thrown if Inputs are Invalid
- */
- public static final double Probit (
- final double p)
- throws java.lang.Exception
- {
- return InverseCDF (p);
- }
- /**
- * Generate a Random Univariate Number following a Gaussian Distribution
- *
- * @return The Random Univariate Number
- *
- * @throws java.lang.Exception Thrown the Random Number cannot be generated
- */
- public static final double Random()
- throws java.lang.Exception
- {
- return InverseCDF (java.lang.Math.random());
- }
- /**
- * Compute the Error Function of x
- *
- * @param x x
- *
- * @return The Error Function of x
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public static final double ERF (
- final double x)
- throws java.lang.Exception
- {
- return 2. * CDF (x * java.lang.Math.sqrt (2.)) - 1.;
- }
- /**
- * Compute the Error Function Complement of x
- *
- * @param x x
- *
- * @return The Error Function Complement of x
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public static final double ERFC (
- final double x)
- throws java.lang.Exception
- {
- return 2. * CDF (1. - x * java.lang.Math.sqrt (2.));
- }
- }