R1MultivariateNormal.java

  1. package org.drip.measure.gaussian;

  2. /*
  3.  * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
  4.  */

  5. /*!
  6.  * Copyright (C) 2020 Lakshmi Krishnamurthy
  7.  * Copyright (C) 2019 Lakshmi Krishnamurthy
  8.  * Copyright (C) 2018 Lakshmi Krishnamurthy
  9.  * Copyright (C) 2017 Lakshmi Krishnamurthy
  10.  * Copyright (C) 2016 Lakshmi Krishnamurthy
  11.  *
  12.  *  This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
  13.  *      asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
  14.  *      analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
  15.  *      equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
  16.  *      numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
  17.  *      and computational support.
  18.  *  
  19.  *      https://lakshmidrip.github.io/DROP/
  20.  *  
  21.  *  DROP is composed of three modules:
  22.  *  
  23.  *  - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
  24.  *  - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
  25.  *  - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
  26.  *
  27.  *  DROP Product Core implements libraries for the following:
  28.  *  - Fixed Income Analytics
  29.  *  - Loan Analytics
  30.  *  - Transaction Cost Analytics
  31.  *
  32.  *  DROP Portfolio Core implements libraries for the following:
  33.  *  - Asset Allocation Analytics
  34.  *  - Asset Liability Management Analytics
  35.  *  - Capital Estimation Analytics
  36.  *  - Exposure Analytics
  37.  *  - Margin Analytics
  38.  *  - XVA Analytics
  39.  *
  40.  *  DROP Computational Core implements libraries for the following:
  41.  *  - Algorithm Support
  42.  *  - Computation Support
  43.  *  - Function Analysis
  44.  *  - Model Validation
  45.  *  - Numerical Analysis
  46.  *  - Numerical Optimizer
  47.  *  - Spline Builder
  48.  *  - Statistical Learning
  49.  *
  50.  *  Documentation for DROP is Spread Over:
  51.  *
  52.  *  - Main                     => https://lakshmidrip.github.io/DROP/
  53.  *  - Wiki                     => https://github.com/lakshmiDRIP/DROP/wiki
  54.  *  - GitHub                   => https://github.com/lakshmiDRIP/DROP
  55.  *  - Repo Layout Taxonomy     => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
  56.  *  - Javadoc                  => https://lakshmidrip.github.io/DROP/Javadoc/index.html
  57.  *  - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
  58.  *  - Release Versions         => https://lakshmidrip.github.io/DROP/version.html
  59.  *  - Community Credits        => https://lakshmidrip.github.io/DROP/credits.html
  60.  *  - Issues Catalog           => https://github.com/lakshmiDRIP/DROP/issues
  61.  *  - JUnit                    => https://lakshmidrip.github.io/DROP/junit/index.html
  62.  *  - Jacoco                   => https://lakshmidrip.github.io/DROP/jacoco/index.html
  63.  *
  64.  *  Licensed under the Apache License, Version 2.0 (the "License");
  65.  *      you may not use this file except in compliance with the License.
  66.  *  
  67.  *  You may obtain a copy of the License at
  68.  *      http://www.apache.org/licenses/LICENSE-2.0
  69.  *  
  70.  *  Unless required by applicable law or agreed to in writing, software
  71.  *      distributed under the License is distributed on an "AS IS" BASIS,
  72.  *      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  73.  *  
  74.  *  See the License for the specific language governing permissions and
  75.  *      limitations under the License.
  76.  */

  77. /**
  78.  * <i>R1MultivariateNormal</i> contains the Generalized Joint Multivariate R<sup>1</sup> Normal
  79.  * Distributions.
  80.  *
  81.  *  <br><br>
  82.  *  <ul>
  83.  *      <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
  84.  *      <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalAnalysisLibrary.md">Numerical Analysis Library</a></li>
  85.  *      <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/README.md">R<sup>d</sup> Continuous/Discrete Probability Measures</a></li>
  86.  *      <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/gaussian/README.md">R<sup>1</sup> R<sup>d</sup> Covariant Gaussian Quadrature</a></li>
  87.  *  </ul>
  88.  *
  89.  * @author Lakshmi Krishnamurthy
  90.  */

  91. public class R1MultivariateNormal extends org.drip.measure.continuous.R1Multivariate {
  92.     private double[] _adblMean = null;
  93.     private org.drip.measure.gaussian.Covariance _covariance = null;

  94.     /**
  95.      * Construct a Standard R1MultivariateNormal Instance
  96.      *
  97.      * @param meta The R^1 Multivariate Meta Headers
  98.      * @param adblMean Array of the Univariate Means
  99.      * @param aadblCovariance The Covariance Matrix
  100.      *
  101.      * @return The Standard Normal Univariate Distribution
  102.      */

  103.     public static final R1MultivariateNormal Standard (
  104.         final org.drip.measure.continuous.MultivariateMeta meta,
  105.         final double[] adblMean,
  106.         final double[][] aadblCovariance)
  107.     {
  108.         try {
  109.             return new R1MultivariateNormal (meta, adblMean, new org.drip.measure.gaussian.Covariance
  110.                 (aadblCovariance));
  111.         } catch (java.lang.Exception e) {
  112.             e.printStackTrace();
  113.         }

  114.         return null;
  115.     }

  116.     /**
  117.      * Construct a Standard R1MultivariateNormal Instance
  118.      *
  119.      * @param astrVariateID Array of Variate IDs
  120.      * @param adblMean Array of the Univariate Means
  121.      * @param aadblCovariance The Covariance Matrix
  122.      *
  123.      * @return The Standard Normal Univariate Distribution
  124.      */

  125.     public static final R1MultivariateNormal Standard (
  126.         final java.lang.String[] astrVariateID,
  127.         final double[] adblMean,
  128.         final double[][] aadblCovariance)
  129.     {
  130.         try {
  131.             return new R1MultivariateNormal (new org.drip.measure.continuous.MultivariateMeta
  132.                 (astrVariateID), adblMean, new org.drip.measure.gaussian.Covariance (aadblCovariance));
  133.         } catch (java.lang.Exception e) {
  134.             e.printStackTrace();
  135.         }

  136.         return null;
  137.     }

  138.     /**
  139.      * R1MultivariateNormal Constructor
  140.      *
  141.      * @param meta The R^1 Multivariate Meta Headers
  142.      * @param adblMean Array of the Univariate Means
  143.      * @param covariance The Multivariate Covariance
  144.      *
  145.      * @throws java.lang.Exception Thrown if the Inputs are Invalid
  146.      */

  147.     public R1MultivariateNormal (
  148.         final org.drip.measure.continuous.MultivariateMeta meta,
  149.         final double[] adblMean,
  150.         final org.drip.measure.gaussian.Covariance covariance)
  151.         throws java.lang.Exception
  152.     {
  153.         super (meta);

  154.         if (null == (_adblMean = adblMean) || null == (_covariance = covariance))
  155.             throw new java.lang.Exception ("R1MultivariateNormal Constructor => Invalid Inputs!");

  156.         int iNumVariate = meta.numVariable();

  157.         if (iNumVariate != _adblMean.length || iNumVariate != _covariance.numVariate() ||
  158.             !org.drip.numerical.common.NumberUtil.IsValid (_adblMean)) {
  159.             System.out.println ("iNumVariate = " + iNumVariate);

  160.             System.out.println ("_adblMean = " + _adblMean.length);

  161.             throw new java.lang.Exception ("R1MultivariateNormal Constructor => Invalid Inputs!");
  162.         }
  163.     }

  164.     /**
  165.      * Compute the Co-variance of the Distribution
  166.      *
  167.      * @return The Co-variance of the Distribution
  168.      */

  169.     public org.drip.measure.gaussian.Covariance covariance()
  170.     {
  171.         return _covariance;
  172.     }

  173.     @Override public double density (
  174.         final double[] adblVariate)
  175.         throws java.lang.Exception
  176.     {
  177.         if (null == adblVariate || !org.drip.numerical.common.NumberUtil.IsValid (adblVariate))
  178.             throw new java.lang.Exception ("R1MultivariateNormal::density => Invalid Inputs");

  179.         double dblDensity = 0.;
  180.         int iNumVariate = _adblMean.length;
  181.         double[] adblVariateOffset = new double[iNumVariate];

  182.         if (iNumVariate != adblVariate.length)
  183.             throw new java.lang.Exception ("R1MultivariateNormal Constructor => Invalid Inputs!");

  184.         for (int i = 0; i < iNumVariate; ++i)
  185.             adblVariateOffset[i] = adblVariate[i] - _adblMean[i];

  186.         double[][] aadblPrecision = _covariance.precisionMatrix();

  187.         for (int i = 0; i < iNumVariate; ++i) {
  188.             for (int j = 0; j < iNumVariate; ++j)
  189.                 dblDensity = dblDensity + adblVariateOffset[i] * aadblPrecision[i][j] *
  190.                     adblVariateOffset[j];
  191.         }

  192.         return java.lang.Math.exp (dblDensity) * java.lang.Math.pow (2. * java.lang.Math.PI, -0.5 *
  193.             iNumVariate);
  194.     }

  195.     @Override public double[] mean()
  196.     {
  197.         return _adblMean;
  198.     }

  199.     @Override public double[] variance()
  200.     {
  201.         return _covariance.variance();
  202.     }
  203. }