R1MultivariateNormal.java
- package org.drip.measure.gaussian;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2020 Lakshmi Krishnamurthy
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- * Copyright (C) 2018 Lakshmi Krishnamurthy
- * Copyright (C) 2017 Lakshmi Krishnamurthy
- * Copyright (C) 2016 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
- * asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
- * analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
- * equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
- * numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
- * and computational support.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three modules:
- *
- * - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
- *
- * DROP Product Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Loan Analytics
- * - Transaction Cost Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Asset Liability Management Analytics
- * - Capital Estimation Analytics
- * - Exposure Analytics
- * - Margin Analytics
- * - XVA Analytics
- *
- * DROP Computational Core implements libraries for the following:
- * - Algorithm Support
- * - Computation Support
- * - Function Analysis
- * - Model Validation
- * - Numerical Analysis
- * - Numerical Optimizer
- * - Spline Builder
- * - Statistical Learning
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>R1MultivariateNormal</i> contains the Generalized Joint Multivariate R<sup>1</sup> Normal
- * Distributions.
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalAnalysisLibrary.md">Numerical Analysis Library</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/README.md">R<sup>d</sup> Continuous/Discrete Probability Measures</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/gaussian/README.md">R<sup>1</sup> R<sup>d</sup> Covariant Gaussian Quadrature</a></li>
- * </ul>
- *
- * @author Lakshmi Krishnamurthy
- */
- public class R1MultivariateNormal extends org.drip.measure.continuous.R1Multivariate {
- private double[] _adblMean = null;
- private org.drip.measure.gaussian.Covariance _covariance = null;
- /**
- * Construct a Standard R1MultivariateNormal Instance
- *
- * @param meta The R^1 Multivariate Meta Headers
- * @param adblMean Array of the Univariate Means
- * @param aadblCovariance The Covariance Matrix
- *
- * @return The Standard Normal Univariate Distribution
- */
- public static final R1MultivariateNormal Standard (
- final org.drip.measure.continuous.MultivariateMeta meta,
- final double[] adblMean,
- final double[][] aadblCovariance)
- {
- try {
- return new R1MultivariateNormal (meta, adblMean, new org.drip.measure.gaussian.Covariance
- (aadblCovariance));
- } catch (java.lang.Exception e) {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Construct a Standard R1MultivariateNormal Instance
- *
- * @param astrVariateID Array of Variate IDs
- * @param adblMean Array of the Univariate Means
- * @param aadblCovariance The Covariance Matrix
- *
- * @return The Standard Normal Univariate Distribution
- */
- public static final R1MultivariateNormal Standard (
- final java.lang.String[] astrVariateID,
- final double[] adblMean,
- final double[][] aadblCovariance)
- {
- try {
- return new R1MultivariateNormal (new org.drip.measure.continuous.MultivariateMeta
- (astrVariateID), adblMean, new org.drip.measure.gaussian.Covariance (aadblCovariance));
- } catch (java.lang.Exception e) {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * R1MultivariateNormal Constructor
- *
- * @param meta The R^1 Multivariate Meta Headers
- * @param adblMean Array of the Univariate Means
- * @param covariance The Multivariate Covariance
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public R1MultivariateNormal (
- final org.drip.measure.continuous.MultivariateMeta meta,
- final double[] adblMean,
- final org.drip.measure.gaussian.Covariance covariance)
- throws java.lang.Exception
- {
- super (meta);
- if (null == (_adblMean = adblMean) || null == (_covariance = covariance))
- throw new java.lang.Exception ("R1MultivariateNormal Constructor => Invalid Inputs!");
- int iNumVariate = meta.numVariable();
- if (iNumVariate != _adblMean.length || iNumVariate != _covariance.numVariate() ||
- !org.drip.numerical.common.NumberUtil.IsValid (_adblMean)) {
- System.out.println ("iNumVariate = " + iNumVariate);
- System.out.println ("_adblMean = " + _adblMean.length);
- throw new java.lang.Exception ("R1MultivariateNormal Constructor => Invalid Inputs!");
- }
- }
- /**
- * Compute the Co-variance of the Distribution
- *
- * @return The Co-variance of the Distribution
- */
- public org.drip.measure.gaussian.Covariance covariance()
- {
- return _covariance;
- }
- @Override public double density (
- final double[] adblVariate)
- throws java.lang.Exception
- {
- if (null == adblVariate || !org.drip.numerical.common.NumberUtil.IsValid (adblVariate))
- throw new java.lang.Exception ("R1MultivariateNormal::density => Invalid Inputs");
- double dblDensity = 0.;
- int iNumVariate = _adblMean.length;
- double[] adblVariateOffset = new double[iNumVariate];
- if (iNumVariate != adblVariate.length)
- throw new java.lang.Exception ("R1MultivariateNormal Constructor => Invalid Inputs!");
- for (int i = 0; i < iNumVariate; ++i)
- adblVariateOffset[i] = adblVariate[i] - _adblMean[i];
- double[][] aadblPrecision = _covariance.precisionMatrix();
- for (int i = 0; i < iNumVariate; ++i) {
- for (int j = 0; j < iNumVariate; ++j)
- dblDensity = dblDensity + adblVariateOffset[i] * aadblPrecision[i][j] *
- adblVariateOffset[j];
- }
- return java.lang.Math.exp (dblDensity) * java.lang.Math.pow (2. * java.lang.Math.PI, -0.5 *
- iNumVariate);
- }
- @Override public double[] mean()
- {
- return _adblMean;
- }
- @Override public double[] variance()
- {
- return _covariance.variance();
- }
- }