R1UnivariateNormal.java
- package org.drip.measure.gaussian;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2020 Lakshmi Krishnamurthy
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- * Copyright (C) 2018 Lakshmi Krishnamurthy
- * Copyright (C) 2017 Lakshmi Krishnamurthy
- * Copyright (C) 2016 Lakshmi Krishnamurthy
- * Copyright (C) 2015 Lakshmi Krishnamurthy
- * Copyright (C) 2014 Lakshmi Krishnamurthy
- * Copyright (C) 2013 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
- * asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
- * analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
- * equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
- * numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
- * and computational support.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three modules:
- *
- * - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
- *
- * DROP Product Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Loan Analytics
- * - Transaction Cost Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Asset Liability Management Analytics
- * - Capital Estimation Analytics
- * - Exposure Analytics
- * - Margin Analytics
- * - XVA Analytics
- *
- * DROP Computational Core implements libraries for the following:
- * - Algorithm Support
- * - Computation Support
- * - Function Analysis
- * - Model Validation
- * - Numerical Analysis
- * - Numerical Optimizer
- * - Spline Builder
- * - Statistical Learning
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>R1UnivariateNormal</i> implements the Univariate R<sup>1</sup> Normal Distribution. It implements the
- * Incremental, the Cumulative, and the Inverse Cumulative Distribution Densities.
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalAnalysisLibrary.md">Numerical Analysis Library</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/README.md">R<sup>d</sup> Continuous/Discrete Probability Measures</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/gaussian/README.md">R<sup>1</sup> R<sup>d</sup> Covariant Gaussian Quadrature</a></li>
- * </ul>
- *
- * @author Lakshmi Krishnamurthy
- */
- public class R1UnivariateNormal extends org.drip.measure.continuous.R1Univariate {
- private double _dblMean = java.lang.Double.NaN;
- private double _dblSigma = java.lang.Double.NaN;
- /**
- * Generate a N (0, 1) distribution
- *
- * @return The N (0, 1) distribution
- */
- public static final org.drip.measure.gaussian.R1UnivariateNormal Standard()
- {
- try {
- return new R1UnivariateNormal (0., 1.);
- } catch (java.lang.Exception e) {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Construct a R1 Normal/Gaussian Distribution
- *
- * @param dblMean Mean of the Distribution
- * @param dblSigma Sigma of the Distribution
- *
- * @throws java.lang.Exception Thrown if the inputs are invalid
- */
- public R1UnivariateNormal (
- final double dblMean,
- final double dblSigma)
- throws java.lang.Exception
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (_dblMean = dblMean) ||
- !org.drip.numerical.common.NumberUtil.IsValid (_dblSigma = dblSigma) || 0. > _dblSigma)
- throw new java.lang.Exception ("R1UnivariateNormal Constructor: Invalid Inputs");
- }
- /**
- * Retrieve the Sigma
- *
- * @return The Sigma
- */
- public double sigma()
- {
- return _dblSigma;
- }
- @Override public double[] support()
- {
- return new double[]
- {
- java.lang.Double.NEGATIVE_INFINITY,
- java.lang.Double.POSITIVE_INFINITY
- };
- }
- @Override public double cumulative (
- final double dblX)
- throws java.lang.Exception
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (dblX))
- throw new java.lang.Exception ("R1UnivariateNormal::cumulative => Invalid Inputs");
- if (0. == _dblSigma) return dblX >= _dblMean ? 1. : 0.;
- return org.drip.measure.gaussian.NormalQuadrature.CDF ((dblX - _dblMean) / _dblSigma);
- }
- @Override public double incremental (
- final double dblXLeft,
- final double dblXRight)
- throws java.lang.Exception
- {
- return cumulative (dblXRight) - cumulative (dblXLeft);
- }
- @Override public double invCumulative (
- final double dblY)
- throws java.lang.Exception
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (dblY) || 0. == _dblSigma)
- throw new java.lang.Exception ("R1UnivariateNormal::invCumulative => Cannot calculate");
- return org.drip.measure.gaussian.NormalQuadrature.InverseCDF (dblY) * _dblSigma + _dblMean;
- }
- @Override public double density (
- final double dblX)
- throws java.lang.Exception
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (dblX))
- throw new java.lang.Exception ("R1UnivariateNormal::density => Invalid Inputs");
- if (0. == _dblSigma) return dblX == _dblMean ? 1. : 0.;
- double dblMeanShift = (dblX - _dblMean) / _dblSigma;
- return java.lang.Math.exp (-0.5 * dblMeanShift * dblMeanShift);
- }
- @Override public double mean()
- {
- return _dblMean;
- }
- @Override public double median()
- {
- return _dblMean;
- }
- @Override public double mode()
- {
- return _dblMean;
- }
- @Override public double variance()
- {
- return _dblSigma * _dblSigma;
- }
- @Override public org.drip.numerical.common.Array2D histogram()
- {
- return null;
- }
- @Override public double random()
- {
- try
- {
- return invCumulative (java.lang.Math.random());
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- }
- return java.lang.Double.NaN;
- }
- /**
- * Compute the Error Function Around an Absolute Width around the Mean
- *
- * @param dblX The Width
- *
- * @return The Error Function Around an Absolute Width around the Mean
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public double errorFunction (
- final double dblX)
- throws java.lang.Exception
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (dblX))
- throw new java.lang.Exception ("R1UnivariateNormal::errorFunction => Invalid Inputs");
- double dblWidth = java.lang.Math.abs (dblX);
- return cumulative (_dblMean + dblWidth) - cumulative (_dblMean - dblWidth);
- }
- /**
- * Compute the Confidence given the Width around the Mean
- *
- * @param dblWidth The Width
- *
- * @return The Error Function Around an Absolute Width around the Mean
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public double confidence (
- final double dblWidth)
- throws java.lang.Exception
- {
- return errorFunction (dblWidth);
- }
- /**
- * Compute the Width around the Mean given the Confidence Level
- *
- * @param dblConfidence The Confidence Level
- *
- * @return The Width around the Mean given the Confidence Level
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public double confidenceInterval (
- final double dblConfidence)
- throws java.lang.Exception
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (dblConfidence) || 0. >= dblConfidence || 1. <=
- dblConfidence)
- throw new java.lang.Exception ("R1UnivariateNormal::confidenceInterval => Invalid Inputs");
- return invCumulative (0.5 * (1. + dblConfidence));
- }
- }