R1PiecewiseLinear.java
- package org.drip.measure.lebesgue;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2020 Lakshmi Krishnamurthy
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- * Copyright (C) 2018 Lakshmi Krishnamurthy
- * Copyright (C) 2017 Lakshmi Krishnamurthy
- * Copyright (C) 2016 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
- * asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
- * analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
- * equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
- * numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
- * and computational support.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three modules:
- *
- * - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
- *
- * DROP Product Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Loan Analytics
- * - Transaction Cost Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Asset Liability Management Analytics
- * - Capital Estimation Analytics
- * - Exposure Analytics
- * - Margin Analytics
- * - XVA Analytics
- *
- * DROP Computational Core implements libraries for the following:
- * - Algorithm Support
- * - Computation Support
- * - Function Analysis
- * - Model Validation
- * - Numerical Analysis
- * - Numerical Optimizer
- * - Spline Builder
- * - Statistical Learning
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>R1PiecewiseLinear</i> implements the Piecewise Linear R<sup>1</sup> Distributions. It exports the
- * Methods corresponding to the R<sup>1</sup> Lebesgue Base Class.
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalAnalysisLibrary.md">Numerical Analysis Library</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/README.md">R<sup>d</sup> Continuous/Discrete Probability Measures</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/lebesgue/README.md">Uniform Piece-wise Lebesgue Measure</a></li>
- * </ul>
- *
- * @author Lakshmi Krishnamurthy
- */
- public class R1PiecewiseLinear extends org.drip.measure.lebesgue.R1Uniform {
- private double[] _adblPiecewiseDensity = null;
- private double[] _adblPredictorOrdinate = null;
- /**
- * Calibrate an R1PiecewiseLinear Lebesgue Instance
- *
- * @param dblLeftPredictorOrdinateEdge Left Predictor Ordinate Edge
- * @param dblRightPredictorOrdinateEdge Right Predictor Ordinate Edge
- * @param adblPredictorOrdinate Array of Intermediate Predictor Ordinates
- * @param adblCumulativeProbability Array of corresponding Cumulative Probabilities
- *
- * @return The R1PiecewiseLinearLebesgue Instance
- */
- public static final R1PiecewiseLinear Standard (
- final double dblLeftPredictorOrdinateEdge,
- final double dblRightPredictorOrdinateEdge,
- final double[] adblPredictorOrdinate,
- final double[] adblCumulativeProbability)
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (dblLeftPredictorOrdinateEdge) ||
- !org.drip.numerical.common.NumberUtil.IsValid (dblRightPredictorOrdinateEdge) ||
- dblLeftPredictorOrdinateEdge >= dblRightPredictorOrdinateEdge || null ==
- adblPredictorOrdinate || null == adblCumulativeProbability)
- return null;
- int iNumPredictorOrdinate = adblPredictorOrdinate.length;
- double[] adblPiecewiseDensity = new double[iNumPredictorOrdinate + 1];
- if (0 == iNumPredictorOrdinate || iNumPredictorOrdinate != adblCumulativeProbability.length)
- return null;
- for (int i = 0; i <= iNumPredictorOrdinate; ++i) {
- double dblLeftPredictorOrdinate = 0 == i ? dblLeftPredictorOrdinateEdge :
- adblPredictorOrdinate[i - 1];
- if (!org.drip.numerical.common.NumberUtil.IsValid (dblLeftPredictorOrdinate) ||
- dblLeftPredictorOrdinate < dblLeftPredictorOrdinateEdge)
- return null;
- double dblRightPredictorOrdinate = iNumPredictorOrdinate == i ? dblRightPredictorOrdinateEdge :
- adblPredictorOrdinate[i];
- if (!org.drip.numerical.common.NumberUtil.IsValid (dblRightPredictorOrdinate) ||
- dblRightPredictorOrdinate <= dblLeftPredictorOrdinate || dblRightPredictorOrdinate >
- dblRightPredictorOrdinateEdge)
- return null;
- double dblLeftCumulativeProbability = 0 == i ? 0. : adblCumulativeProbability[i - 1];
- double dblRightCumulativeProbability = iNumPredictorOrdinate == i ? 1. :
- adblCumulativeProbability[i];
- adblPiecewiseDensity[i] = 2. * (dblRightCumulativeProbability - dblLeftCumulativeProbability) /
- (dblRightPredictorOrdinate * dblRightPredictorOrdinate - dblLeftPredictorOrdinate *
- dblLeftPredictorOrdinate);
- }
- try {
- return new R1PiecewiseLinear (dblLeftPredictorOrdinateEdge,
- dblRightPredictorOrdinateEdge, adblPredictorOrdinate, adblPiecewiseDensity);
- } catch (java.lang.Exception e) {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * R1PiecewiseLinear Constructor
- *
- * @param dblLeftPredictorOrdinateEdge Left Predictor Ordinate Edge
- * @param dblRightPredictorOrdinateEdge Right Predictor Ordinate Edge
- * @param adblPredictorOrdinate Array of Intermediate Predictor Ordinates
- * @param adblPiecewiseDensity Array of corresponding Piece-wise Densities
- *
- * @throws java.lang.Exception Thrown if the Inputs are invalid
- */
- public R1PiecewiseLinear (
- final double dblLeftPredictorOrdinateEdge,
- final double dblRightPredictorOrdinateEdge,
- final double[] adblPredictorOrdinate,
- final double[] adblPiecewiseDensity)
- throws java.lang.Exception
- {
- super (dblLeftPredictorOrdinateEdge, dblRightPredictorOrdinateEdge);
- if (null == (_adblPredictorOrdinate = adblPredictorOrdinate) || null == (_adblPiecewiseDensity =
- adblPiecewiseDensity))
- throw new java.lang.Exception ("R1PiecewiseLinear Constructor: Invalid Inputs");
- int iNumPredictorOrdinate = _adblPredictorOrdinate.length;
- if (0 == iNumPredictorOrdinate || iNumPredictorOrdinate + 1 != _adblPiecewiseDensity.length)
- throw new java.lang.Exception ("R1PiecewiseLinear Constructor: Invalid Inputs");
- }
- /**
- * Retrieve the Array of Predictor Ordinates
- *
- * @return The Array of Predictor Ordinates
- */
- public double[] predictorOrdinates()
- {
- return _adblPredictorOrdinate;
- }
- /**
- * Retrieve the Array of Piecewise Densities
- *
- * @return The Array of Piecewise Densities
- */
- public double[] piecewiseDensities()
- {
- return _adblPiecewiseDensity;
- }
- @Override public double cumulative (
- final double dblX)
- throws java.lang.Exception
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (dblX))
- throw new java.lang.Exception ("R1PiecewiseLinear::cumulative => Invalid Inputs");
- double dblLeftEdge = leftEdge();
- double dblRightEdge = rightEdge();
- if (dblX <= dblLeftEdge) return 0.;
- if (dblX >= dblRightEdge) return 1.;
- int iSegmentIndex = 0;
- double dblSegmentLeft = dblLeftEdge;
- double dblCumulativeProbability = 0.;
- int iMaxSegmentIndex = _adblPiecewiseDensity.length - 1;
- while (iSegmentIndex < iMaxSegmentIndex) {
- double dblSegmentRight = _adblPredictorOrdinate[iSegmentIndex];
- if (dblX >= dblSegmentLeft && dblX <= dblSegmentRight)
- return dblCumulativeProbability + 0.5 * _adblPiecewiseDensity[iSegmentIndex] * (dblX * dblX -
- dblSegmentLeft * dblSegmentLeft);
- dblCumulativeProbability += 0.5 * _adblPiecewiseDensity[iSegmentIndex] * (dblSegmentRight *
- dblSegmentRight - dblSegmentLeft * dblSegmentLeft);
- dblSegmentLeft = dblSegmentRight;
- ++iSegmentIndex;
- }
- return dblCumulativeProbability + 0.5 * _adblPiecewiseDensity[iMaxSegmentIndex] * (dblX * dblX -
- dblRightEdge * dblRightEdge);
- }
- @Override public double invCumulative (
- final double dblY)
- throws java.lang.Exception
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (dblY) || dblY < 0. || dblY > 1.)
- throw new java.lang.Exception ("R1PiecewiseLinear::invCumulative => Invalid inputs");
- org.drip.function.definition.R1ToR1 r1ToR1CumulativeProbability = new
- org.drip.function.definition.R1ToR1 (null) {
- @Override public double evaluate (
- final double dblX)
- throws java.lang.Exception
- {
- return cumulative (dblX);
- }
- };
- org.drip.function.r1tor1solver.FixedPointFinderOutput fpfo = new
- org.drip.function.r1tor1solver.FixedPointFinderBracketing (dblY, r1ToR1CumulativeProbability,
- null, org.drip.function.r1tor1solver.VariateIteratorPrimitive.BISECTION, true).findRoot();
- if (null == fpfo || !fpfo.containsRoot())
- throw new java.lang.Exception ("R1PiecewiseLinear::invCumulative => No roots");
- return fpfo.getRoot();
- }
- @Override public double density (
- final double dblX)
- throws java.lang.Exception
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (dblX))
- throw new java.lang.Exception ("R1PiecewiseLinear::density => Invalid Inputs");
- if (dblX <= leftEdge() || dblX >= rightEdge()) return 0.;
- int iSegmentIndex = 0;
- int iMaxSegmentIndex = _adblPiecewiseDensity.length - 1;
- while (iSegmentIndex < iMaxSegmentIndex) {
- if (dblX >= _adblPredictorOrdinate[iSegmentIndex] && dblX <=
- _adblPredictorOrdinate[iSegmentIndex + 1])
- break;
- ++iSegmentIndex;
- }
- return _adblPiecewiseDensity[iSegmentIndex] * dblX;
- }
- @Override public org.drip.numerical.common.Array2D histogram()
- {
- double dblLeftEdge = leftEdge();
- double[] adblX = new double[GRID_WIDTH];
- double[] adblY = new double[GRID_WIDTH];
- double dblWidth = (rightEdge() - dblLeftEdge) / GRID_WIDTH;
- for (int i = 0; i < GRID_WIDTH; ++i) {
- adblX[i] = dblLeftEdge + (i + 1) * dblWidth;
- try {
- adblY[i] = incremental (adblX[i] - dblWidth, adblX[i]);
- } catch (java.lang.Exception e) {
- e.printStackTrace();
- return null;
- }
- }
- return org.drip.numerical.common.Array2D.FromArray (adblX, adblY);
- }
- }