R1Uniform.java

  1. package org.drip.measure.lebesgue;

  2. /*
  3.  * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
  4.  */

  5. /*!
  6.  * Copyright (C) 2020 Lakshmi Krishnamurthy
  7.  * Copyright (C) 2019 Lakshmi Krishnamurthy
  8.  * Copyright (C) 2018 Lakshmi Krishnamurthy
  9.  * Copyright (C) 2017 Lakshmi Krishnamurthy
  10.  * Copyright (C) 2016 Lakshmi Krishnamurthy
  11.  * Copyright (C) 2015 Lakshmi Krishnamurthy
  12.  *
  13.  *  This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
  14.  *      asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
  15.  *      analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
  16.  *      equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
  17.  *      numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
  18.  *      and computational support.
  19.  *  
  20.  *      https://lakshmidrip.github.io/DROP/
  21.  *  
  22.  *  DROP is composed of three modules:
  23.  *  
  24.  *  - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
  25.  *  - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
  26.  *  - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
  27.  *
  28.  *  DROP Product Core implements libraries for the following:
  29.  *  - Fixed Income Analytics
  30.  *  - Loan Analytics
  31.  *  - Transaction Cost Analytics
  32.  *
  33.  *  DROP Portfolio Core implements libraries for the following:
  34.  *  - Asset Allocation Analytics
  35.  *  - Asset Liability Management Analytics
  36.  *  - Capital Estimation Analytics
  37.  *  - Exposure Analytics
  38.  *  - Margin Analytics
  39.  *  - XVA Analytics
  40.  *
  41.  *  DROP Computational Core implements libraries for the following:
  42.  *  - Algorithm Support
  43.  *  - Computation Support
  44.  *  - Function Analysis
  45.  *  - Model Validation
  46.  *  - Numerical Analysis
  47.  *  - Numerical Optimizer
  48.  *  - Spline Builder
  49.  *  - Statistical Learning
  50.  *
  51.  *  Documentation for DROP is Spread Over:
  52.  *
  53.  *  - Main                     => https://lakshmidrip.github.io/DROP/
  54.  *  - Wiki                     => https://github.com/lakshmiDRIP/DROP/wiki
  55.  *  - GitHub                   => https://github.com/lakshmiDRIP/DROP
  56.  *  - Repo Layout Taxonomy     => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
  57.  *  - Javadoc                  => https://lakshmidrip.github.io/DROP/Javadoc/index.html
  58.  *  - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
  59.  *  - Release Versions         => https://lakshmidrip.github.io/DROP/version.html
  60.  *  - Community Credits        => https://lakshmidrip.github.io/DROP/credits.html
  61.  *  - Issues Catalog           => https://github.com/lakshmiDRIP/DROP/issues
  62.  *  - JUnit                    => https://lakshmidrip.github.io/DROP/junit/index.html
  63.  *  - Jacoco                   => https://lakshmidrip.github.io/DROP/jacoco/index.html
  64.  *
  65.  *  Licensed under the Apache License, Version 2.0 (the "License");
  66.  *      you may not use this file except in compliance with the License.
  67.  *  
  68.  *  You may obtain a copy of the License at
  69.  *      http://www.apache.org/licenses/LICENSE-2.0
  70.  *  
  71.  *  Unless required by applicable law or agreed to in writing, software
  72.  *      distributed under the License is distributed on an "AS IS" BASIS,
  73.  *      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  74.  *  
  75.  *  See the License for the specific language governing permissions and
  76.  *      limitations under the License.
  77.  */

  78. /**
  79.  * <i>R1Uniform</i> implements the R<sup>1</sup> Lebesgue (i.e., Bounded Uniform) Distribution, with a
  80.  * Uniform Distribution between a Lower and an Upper Bound.
  81.  *
  82.  *  <br><br>
  83.  *  <ul>
  84.  *      <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
  85.  *      <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalAnalysisLibrary.md">Numerical Analysis Library</a></li>
  86.  *      <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/README.md">R<sup>d</sup> Continuous/Discrete Probability Measures</a></li>
  87.  *      <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/lebesgue/README.md">Uniform Piece-wise Lebesgue Measure</a></li>
  88.  *  </ul>
  89.  *
  90.  * @author Lakshmi Krishnamurthy
  91.  */

  92. public class R1Uniform extends org.drip.measure.continuous.R1Univariate {
  93.     protected static final int GRID_WIDTH = 100;

  94.     private double _dblLeftPredictorOrdinateEdge = java.lang.Double.NaN;
  95.     private double _dblRightPredictorOrdinateEdge = java.lang.Double.NaN;

  96.     /**
  97.      * Construct a R^1 Bounded Uniform Distribution
  98.      *
  99.      * @param dblLeftPredictorOrdinateEdge The Left Predictor Ordinate Edge
  100.      * @param dblRightPredictorOrdinateEdge The Right Predictor Ordinate Edge
  101.      *
  102.      * @throws java.lang.Exception Thrown if the inputs are invalid
  103.      */

  104.     public R1Uniform (
  105.         final double dblLeftPredictorOrdinateEdge,
  106.         final double dblRightPredictorOrdinateEdge)
  107.         throws java.lang.Exception
  108.     {
  109.         if (!org.drip.numerical.common.NumberUtil.IsValid (_dblLeftPredictorOrdinateEdge =
  110.             dblLeftPredictorOrdinateEdge) || !org.drip.numerical.common.NumberUtil.IsValid
  111.                 (_dblRightPredictorOrdinateEdge = dblRightPredictorOrdinateEdge) ||
  112.                     _dblRightPredictorOrdinateEdge <= _dblLeftPredictorOrdinateEdge)
  113.             throw new java.lang.Exception ("R1Uniform Constructor: Invalid Inputs");
  114.     }

  115.     /**
  116.      * Retrieve the Left Predictor Ordinate Edge
  117.      *
  118.      * @return The Left Predictor Ordinate Edge
  119.      */

  120.     public double leftEdge()
  121.     {
  122.         return _dblLeftPredictorOrdinateEdge;
  123.     }

  124.     /**
  125.      * Retrieve the Right Predictor Ordinate Edge
  126.      *
  127.      * @return The Right Predictor Ordinat Edge
  128.      */

  129.     public double rightEdge()
  130.     {
  131.         return _dblRightPredictorOrdinateEdge;
  132.     }

  133.     @Override public double[] support()
  134.     {
  135.         return new double[]
  136.         {
  137.             _dblLeftPredictorOrdinateEdge,
  138.             _dblRightPredictorOrdinateEdge
  139.         };
  140.     }

  141.     @Override public double cumulative (
  142.         final double dblX)
  143.         throws java.lang.Exception
  144.     {
  145.         if (!org.drip.numerical.common.NumberUtil.IsValid (dblX))
  146.             throw new java.lang.Exception ("R1Uniform::cumulative => Invalid Inputs");

  147.         if (dblX <= _dblLeftPredictorOrdinateEdge) return 0.;

  148.         if (dblX >= _dblRightPredictorOrdinateEdge) return 1.;

  149.         return (dblX - _dblLeftPredictorOrdinateEdge) / (_dblRightPredictorOrdinateEdge -
  150.             _dblLeftPredictorOrdinateEdge);
  151.     }

  152.     @Override public double incremental (
  153.         final double dblXLeft,
  154.         final double dblXRight)
  155.         throws java.lang.Exception
  156.     {
  157.         return cumulative (dblXRight) - cumulative (dblXLeft);
  158.     }

  159.     @Override public double invCumulative (
  160.         final double dblY)
  161.         throws java.lang.Exception
  162.     {
  163.         if (!org.drip.numerical.common.NumberUtil.IsValid (dblY) || dblY < 0. || dblY > 1.)
  164.             throw new java.lang.Exception ("R1Uniform::invCumulative => Invalid inputs");

  165.         return dblY * (_dblRightPredictorOrdinateEdge - _dblLeftPredictorOrdinateEdge) +
  166.             _dblLeftPredictorOrdinateEdge;
  167.     }

  168.     @Override public double density (
  169.         final double dblX)
  170.         throws java.lang.Exception
  171.     {
  172.         return dblX <= _dblLeftPredictorOrdinateEdge || dblX >= _dblRightPredictorOrdinateEdge ? 0. : 1. /
  173.             (_dblRightPredictorOrdinateEdge - _dblLeftPredictorOrdinateEdge);
  174.     }

  175.     @Override public double mean()
  176.     {
  177.         return 0.5 * (_dblRightPredictorOrdinateEdge + _dblLeftPredictorOrdinateEdge);
  178.     }

  179.     @Override public double variance()
  180.     {
  181.         return (_dblRightPredictorOrdinateEdge - _dblLeftPredictorOrdinateEdge) *
  182.             (_dblRightPredictorOrdinateEdge - _dblLeftPredictorOrdinateEdge) / 12.;
  183.     }

  184.     @Override public org.drip.numerical.common.Array2D histogram()
  185.     {
  186.         double[] adblX = new double[GRID_WIDTH];
  187.         double[] adblY = new double[GRID_WIDTH];
  188.         double dblWidth = (_dblRightPredictorOrdinateEdge - _dblLeftPredictorOrdinateEdge) / GRID_WIDTH;

  189.         for (int i = 0; i < GRID_WIDTH; ++i) {
  190.             adblY[i] = 1. / GRID_WIDTH;
  191.             adblX[i] = _dblLeftPredictorOrdinateEdge + (i + 1) * dblWidth;
  192.         }

  193.         return org.drip.numerical.common.Array2D.FromArray (adblX, adblY);
  194.     }
  195. }