RdUniform.java

  1. package org.drip.measure.lebesgue;

  2. /*
  3.  * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
  4.  */

  5. /*!
  6.  * Copyright (C) 2020 Lakshmi Krishnamurthy
  7.  * Copyright (C) 2019 Lakshmi Krishnamurthy
  8.  * Copyright (C) 2018 Lakshmi Krishnamurthy
  9.  * Copyright (C) 2017 Lakshmi Krishnamurthy
  10.  * Copyright (C) 2016 Lakshmi Krishnamurthy
  11.  * Copyright (C) 2015 Lakshmi Krishnamurthy
  12.  *
  13.  *  This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
  14.  *      asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
  15.  *      analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
  16.  *      equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
  17.  *      numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
  18.  *      and computational support.
  19.  *  
  20.  *      https://lakshmidrip.github.io/DROP/
  21.  *  
  22.  *  DROP is composed of three modules:
  23.  *  
  24.  *  - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
  25.  *  - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
  26.  *  - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
  27.  *
  28.  *  DROP Product Core implements libraries for the following:
  29.  *  - Fixed Income Analytics
  30.  *  - Loan Analytics
  31.  *  - Transaction Cost Analytics
  32.  *
  33.  *  DROP Portfolio Core implements libraries for the following:
  34.  *  - Asset Allocation Analytics
  35.  *  - Asset Liability Management Analytics
  36.  *  - Capital Estimation Analytics
  37.  *  - Exposure Analytics
  38.  *  - Margin Analytics
  39.  *  - XVA Analytics
  40.  *
  41.  *  DROP Computational Core implements libraries for the following:
  42.  *  - Algorithm Support
  43.  *  - Computation Support
  44.  *  - Function Analysis
  45.  *  - Model Validation
  46.  *  - Numerical Analysis
  47.  *  - Numerical Optimizer
  48.  *  - Spline Builder
  49.  *  - Statistical Learning
  50.  *
  51.  *  Documentation for DROP is Spread Over:
  52.  *
  53.  *  - Main                     => https://lakshmidrip.github.io/DROP/
  54.  *  - Wiki                     => https://github.com/lakshmiDRIP/DROP/wiki
  55.  *  - GitHub                   => https://github.com/lakshmiDRIP/DROP
  56.  *  - Repo Layout Taxonomy     => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
  57.  *  - Javadoc                  => https://lakshmidrip.github.io/DROP/Javadoc/index.html
  58.  *  - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
  59.  *  - Release Versions         => https://lakshmidrip.github.io/DROP/version.html
  60.  *  - Community Credits        => https://lakshmidrip.github.io/DROP/credits.html
  61.  *  - Issues Catalog           => https://github.com/lakshmiDRIP/DROP/issues
  62.  *  - JUnit                    => https://lakshmidrip.github.io/DROP/junit/index.html
  63.  *  - Jacoco                   => https://lakshmidrip.github.io/DROP/jacoco/index.html
  64.  *
  65.  *  Licensed under the Apache License, Version 2.0 (the "License");
  66.  *      you may not use this file except in compliance with the License.
  67.  *  
  68.  *  You may obtain a copy of the License at
  69.  *      http://www.apache.org/licenses/LICENSE-2.0
  70.  *  
  71.  *  Unless required by applicable law or agreed to in writing, software
  72.  *      distributed under the License is distributed on an "AS IS" BASIS,
  73.  *      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  74.  *  
  75.  *  See the License for the specific language governing permissions and
  76.  *      limitations under the License.
  77.  */

  78. /**
  79.  * <i>RdUniform</i> implements the R<sup>d</sup> Lebesgue Measure Distribution that corresponds to a Uniform
  80.  * R<sup>d</sup> d-Volume Space.
  81.  *
  82.  *  <br><br>
  83.  *  <ul>
  84.  *      <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
  85.  *      <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalAnalysisLibrary.md">Numerical Analysis Library</a></li>
  86.  *      <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/README.md">R<sup>d</sup> Continuous/Discrete Probability Measures</a></li>
  87.  *      <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/lebesgue/README.md">Uniform Piece-wise Lebesgue Measure</a></li>
  88.  *  </ul>
  89.  *
  90.  * @author Lakshmi Krishnamurthy
  91.  */

  92. public class RdUniform extends org.drip.measure.continuous.Rd {
  93.     private org.drip.spaces.tensor.RdGeneralizedVector _gmvs = null;

  94.     /**
  95.      * RdUniform Constructor
  96.      *
  97.      * @param gmvs The Vector Space Underlying the Measure
  98.      *
  99.      * @throws java.lang.Exception Thrown if the Inputs are Invalid
  100.      */

  101.     public RdUniform (
  102.         final org.drip.spaces.tensor.RdGeneralizedVector gmvs)
  103.         throws java.lang.Exception
  104.     {
  105.         if (null == (_gmvs = gmvs)) throw new java.lang.Exception ("RdUniform ctr: Invalid Inputs");
  106.     }

  107.     /**
  108.      * Retrieve the Vector Space Underlying the Measure
  109.      *
  110.      * @return The Vector Space Underlying the Measure
  111.      */

  112.     public org.drip.spaces.tensor.RdGeneralizedVector measureSpace()
  113.     {
  114.         return _gmvs;
  115.     }

  116.     @Override public double cumulative (
  117.         final double[] adblX)
  118.         throws java.lang.Exception
  119.     {
  120.         double[] adblLeftEdge = _gmvs.leftDimensionEdge();

  121.         double dblCumulative = 1.;
  122.         int iDimension = adblLeftEdge.length;

  123.         if (null == adblX || iDimension != adblX.length)
  124.             throw new java.lang.Exception ("RdLebesgue::cumulative => Invalid Inputs");

  125.         double[] adblRightEdge = _gmvs.rightDimensionEdge();

  126.         for (int i = 0; i < iDimension; ++i) {
  127.             if (!org.drip.numerical.common.NumberUtil.IsValid (adblX[i]) || adblX[i] > adblRightEdge[i])
  128.                 throw new java.lang.Exception ("RdUniform::cumulative => Invalid Inputs");

  129.             dblCumulative *= (adblX[i] - adblLeftEdge[i]) / (adblRightEdge[i] - adblLeftEdge[i]);
  130.         }

  131.         return dblCumulative;
  132.     }

  133.     @Override public double incremental (
  134.         final double[] adblXLeft,
  135.         final double[] adblXRight)
  136.         throws java.lang.Exception
  137.     {
  138.         if (null == adblXLeft || null == adblXRight)
  139.             throw new java.lang.Exception ("RdUniform::incremental => Invalid Inputs");

  140.         double[] adblLeftEdge = _gmvs.leftDimensionEdge();

  141.         double dblIncremental = 1.;
  142.         int iDimension = adblLeftEdge.length;

  143.         if (iDimension != adblXLeft.length || iDimension != adblXRight.length)
  144.             throw new java.lang.Exception ("RdUniform::incremental => Invalid Inputs");

  145.         double[] adblRightEdge = _gmvs.rightDimensionEdge();

  146.         for (int i = 0; i < iDimension; ++i) {
  147.             if (!org.drip.numerical.common.NumberUtil.IsValid (adblXLeft[i]) || adblXLeft[i] < adblLeftEdge[i] ||
  148.                 !org.drip.numerical.common.NumberUtil.IsValid (adblXRight[i]) || adblXRight[i] >
  149.                     adblRightEdge[i])
  150.                 throw new java.lang.Exception ("RdUniform::incremental => Invalid Inputs");

  151.             dblIncremental *= (adblXRight[i] - adblXLeft[i]) / (adblRightEdge[i] - adblLeftEdge[i]);
  152.         }

  153.         return dblIncremental;
  154.     }

  155.     @Override public double density (
  156.         final double[] adblX)
  157.         throws java.lang.Exception
  158.     {
  159.         return 1. / _gmvs.hyperVolume();
  160.     }
  161. }