DiffusionEvolver.java
package org.drip.measure.process;
/*
* -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*/
/*!
* Copyright (C) 2020 Lakshmi Krishnamurthy
* Copyright (C) 2019 Lakshmi Krishnamurthy
* Copyright (C) 2018 Lakshmi Krishnamurthy
* Copyright (C) 2017 Lakshmi Krishnamurthy
*
* This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
* asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
* analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
* equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
* numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
* and computational support.
*
* https://lakshmidrip.github.io/DROP/
*
* DROP is composed of three modules:
*
* - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
* - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
* - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
*
* DROP Product Core implements libraries for the following:
* - Fixed Income Analytics
* - Loan Analytics
* - Transaction Cost Analytics
*
* DROP Portfolio Core implements libraries for the following:
* - Asset Allocation Analytics
* - Asset Liability Management Analytics
* - Capital Estimation Analytics
* - Exposure Analytics
* - Margin Analytics
* - XVA Analytics
*
* DROP Computational Core implements libraries for the following:
* - Algorithm Support
* - Computation Support
* - Function Analysis
* - Model Validation
* - Numerical Analysis
* - Numerical Optimizer
* - Spline Builder
* - Statistical Learning
*
* Documentation for DROP is Spread Over:
*
* - Main => https://lakshmidrip.github.io/DROP/
* - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
* - GitHub => https://github.com/lakshmiDRIP/DROP
* - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
* - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
* - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
* - Release Versions => https://lakshmidrip.github.io/DROP/version.html
* - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
* - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
* - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
* - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
*
* You may obtain a copy of the License at
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* <i>DiffusionEvolver</i> implements the Functionality that guides the Single Factor R<sup>1</sup> Diffusion
* Random Process Variable Evolution.
*
* <br><br>
* <ul>
* <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
* <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalAnalysisLibrary.md">Numerical Analysis Library</a></li>
* <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/README.md">R<sup>d</sup> Continuous/Discrete Probability Measures</a></li>
* <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/process/README.md">Jump Diffusion Evolver Process Variants</a></li>
* </ul>
*
* @author Lakshmi Krishnamurthy
*/
public class DiffusionEvolver {
private org.drip.measure.dynamics.DiffusionEvaluator _de = null;
/**
* DiffusionEvolver Constructor
*
* @param de The Diffusion Evaluator Instance
*
* @throws java.lang.Exception Thrown if the Inputs are Invalid
*/
public DiffusionEvolver (
final org.drip.measure.dynamics.DiffusionEvaluator de)
throws java.lang.Exception
{
if (null == (_de = de))
throw new java.lang.Exception ("DiffusionEvolver Constructor => Invalid Inputs");
}
/**
* Retrieve the Diffusion Evaluator
*
* @return The Diffusion Evaluator
*/
public org.drip.measure.dynamics.DiffusionEvaluator evaluator()
{
return _de;
}
/**
* Generate the JumpDiffusionEdge Instance from the specified Jump Diffusion Instance
*
* @param jdv The JumpDiffusionVertex Instance
* @param jdeu The Random Unit Realization
* @param dblTimeIncrement The Time Increment Evolution Unit
*
* @return The JumpDiffusionEdge Instance
*/
public org.drip.measure.realization.JumpDiffusionEdge increment (
final org.drip.measure.realization.JumpDiffusionVertex jdv,
final org.drip.measure.realization.JumpDiffusionEdgeUnit jdeu,
final double dblTimeIncrement)
{
if (null == jdv || null == jdeu || !org.drip.numerical.common.NumberUtil.IsValid (dblTimeIncrement))
return null;
double dblPreviousValue = jdv.value();
try {
org.drip.measure.dynamics.LocalEvaluator leVolatility = _de.volatility();
return org.drip.measure.realization.JumpDiffusionEdge.Standard (dblPreviousValue,
_de.drift().value (jdv) * dblTimeIncrement, null == leVolatility ? 0. : leVolatility.value
(jdv) * jdeu.diffusion() * java.lang.Math.sqrt (java.lang.Math.abs (dblTimeIncrement)),
null, jdeu);
} catch (java.lang.Exception e) {
e.printStackTrace();
}
return null;
}
/**
* Generate the JumpDiffusionEdge Instance Backwards from the specified Jump Diffusion Instance
*
* @param jdv The JumpDiffusionVertex Instance
* @param jdeu The Random Unit Realization
* @param dblTimeIncrement The Time Increment Evolution Unit
*
* @return The Reverse JumpDiffusionEdge Instance
*/
public org.drip.measure.realization.JumpDiffusionEdge incrementReverse (
final org.drip.measure.realization.JumpDiffusionVertex jdv,
final org.drip.measure.realization.JumpDiffusionEdgeUnit jdeu,
final double dblTimeIncrement)
{
if (null == jdv || null == jdeu || !org.drip.numerical.common.NumberUtil.IsValid (dblTimeIncrement))
return null;
double dblPreviousValue = jdv.value();
try {
org.drip.measure.dynamics.LocalEvaluator leVolatility = _de.volatility();
return org.drip.measure.realization.JumpDiffusionEdge.Standard (dblPreviousValue, -1. *
_de.drift().value (jdv) * dblTimeIncrement, null == leVolatility ? 0. : -1. *
leVolatility.value (jdv) * jdeu.diffusion() * java.lang.Math.sqrt (java.lang.Math.abs
(dblTimeIncrement)), null, jdeu);
} catch (java.lang.Exception e) {
e.printStackTrace();
}
return null;
}
/**
* Generate the Array of Adjacent JumpDiffusionEdge from the specified Random Variate Array
*
* @param jdv The JumpDiffusionVertex Instance
* @param aJDEU Array of Random Unit Realizations
* @param dblTimeIncrement The Time Increment Evolution Unit
*
* @return The Array of Adjacent JumpDiffusionEdge
*/
public org.drip.measure.realization.JumpDiffusionEdge[] incrementSequence (
final org.drip.measure.realization.JumpDiffusionVertex jdv,
final org.drip.measure.realization.JumpDiffusionEdgeUnit[] aJDEU,
final double dblTimeIncrement)
{
if (null == aJDEU) return null;
int iNumTimeStep = aJDEU.length;
org.drip.measure.realization.JumpDiffusionVertex jdvIter = jdv;
org.drip.measure.realization.JumpDiffusionEdge[] aJDE = 0 == iNumTimeStep ? null : new
org.drip.measure.realization.JumpDiffusionEdge[iNumTimeStep];
if (0 == iNumTimeStep) return null;
for (int i = 0; i < iNumTimeStep; ++i) {
if (null == (aJDE[i] = increment (jdvIter, aJDEU[i], dblTimeIncrement))) return null;
try {
boolean bJumpOccurred = false;
double dblHazardIntegral = 0.;
org.drip.measure.realization.StochasticEdgeJump sej = aJDE[i].stochasticJumpEdge();
if (null != sej) {
bJumpOccurred = sej.jumpOccurred();
dblHazardIntegral = sej.hazardIntegral();
}
jdvIter = new org.drip.measure.realization.JumpDiffusionVertex (jdvIter.time() +
dblTimeIncrement, aJDE[i].finish(), jdvIter.cumulativeHazardIntegral() +
dblHazardIntegral, bJumpOccurred || jdvIter.jumpOccurred());
} catch (java.lang.Exception e) {
e.printStackTrace();
return null;
}
}
return aJDE;
}
/**
* Generate the Array of JumpDiffusionVertex Snaps from the specified Random Variate Array
*
* @param jdv The JumpDiffusionVertex Instance
* @param aJDEU Array of Random Unit Realizations
* @param dblTimeIncrement The Time Increment Evolution Unit
*
* @return The Array of JumpDiffusionVertex Snaps
*/
public org.drip.measure.realization.JumpDiffusionVertex[] vertexSequence (
final org.drip.measure.realization.JumpDiffusionVertex jdv,
final org.drip.measure.realization.JumpDiffusionEdgeUnit[] aJDEU,
final double dblTimeIncrement)
{
if (null == aJDEU) return null;
int iNumVertex = aJDEU.length + 1;
org.drip.measure.realization.JumpDiffusionVertex jdvPrev = jdv;
org.drip.measure.realization.JumpDiffusionVertex[] aJDV = new
org.drip.measure.realization.JumpDiffusionVertex[iNumVertex];
aJDV[0] = jdv;
for (int i = 0; i < iNumVertex - 1; ++i) {
org.drip.measure.realization.JumpDiffusionEdge jde = increment (jdvPrev, aJDEU[i],
dblTimeIncrement);
if (null == jde) return null;
try {
org.drip.measure.realization.StochasticEdgeJump sej = jde.stochasticJumpEdge();
boolean bJumpOccurred = false;
double dblHazardIntegral = 0.;
if (null != sej) {
bJumpOccurred = sej.jumpOccurred();
dblHazardIntegral = sej.hazardIntegral();
}
jdvPrev = aJDV[i + 1] = new org.drip.measure.realization.JumpDiffusionVertex (jdvPrev.time()
+ dblTimeIncrement, jde.finish(), jdvPrev.cumulativeHazardIntegral() + dblHazardIntegral,
bJumpOccurred || jdvPrev.jumpOccurred());
} catch (java.lang.Exception e) {
e.printStackTrace();
return null;
}
}
return aJDV;
}
/**
* Generate the Array of JumpDiffusionVertex Snaps from the specified Random Variate Array
*
* @param jdv The JumpDiffusionVertex Instance
* @param aJDEU Array of Random Unit Realizations
* @param adblTimeIncrement Array of Time Increment Evolution Units
*
* @return The Array of JumpDiffusionVertex Snaps
*/
public org.drip.measure.realization.JumpDiffusionVertex[] vertexSequence (
final org.drip.measure.realization.JumpDiffusionVertex jdv,
final org.drip.measure.realization.JumpDiffusionEdgeUnit[] aJDEU,
final double[] adblTimeIncrement)
{
if (null == aJDEU || null == adblTimeIncrement) return null;
int iNumVertex = aJDEU.length + 1;
org.drip.measure.realization.JumpDiffusionVertex jdvPrev = jdv;
org.drip.measure.realization.JumpDiffusionVertex[] aJDV = new
org.drip.measure.realization.JumpDiffusionVertex[iNumVertex];
aJDV[0] = jdv;
if (iNumVertex != adblTimeIncrement.length + 1) return null;
for (int i = 0; i < iNumVertex - 1; ++i) {
org.drip.measure.realization.JumpDiffusionEdge jde = increment (jdvPrev, aJDEU[i],
adblTimeIncrement[i]);
if (null == jde) return null;
try {
org.drip.measure.realization.StochasticEdgeJump sej = jde.stochasticJumpEdge();
boolean bJumpOccurred = false;
double dblHazardIntegral = 0.;
if (null != sej) {
bJumpOccurred = sej.jumpOccurred();
dblHazardIntegral = sej.hazardIntegral();
}
jdvPrev = aJDV[i + 1] = new org.drip.measure.realization.JumpDiffusionVertex (jdvPrev.time()
+ adblTimeIncrement[i], jde.finish(), jdvPrev.cumulativeHazardIntegral() +
dblHazardIntegral, bJumpOccurred || jdvPrev.jumpOccurred());
} catch (java.lang.Exception e) {
e.printStackTrace();
return null;
}
}
return aJDV;
}
/**
* Generate the Array of JumpDiffusionVertex Snaps Backwards from the specified Random Variate Array
*
* @param jdv The JumpDiffusionVertex Instance
* @param aJDEU Array of Random Unit Realizations
* @param adblTimeIncrement Array of Time Increment Evolution Units
*
* @return The Array of Reverse JumpDiffusionVertex Snaps
*/
public org.drip.measure.realization.JumpDiffusionVertex[] vertexSequenceReverse (
final org.drip.measure.realization.JumpDiffusionVertex jdv,
final org.drip.measure.realization.JumpDiffusionEdgeUnit[] aJDEU,
final double[] adblTimeIncrement)
{
if (null == aJDEU || null == adblTimeIncrement) return null;
int iNumVertex = aJDEU.length + 1;
org.drip.measure.realization.JumpDiffusionVertex jdvPrev = jdv;
org.drip.measure.realization.JumpDiffusionVertex[] aJDV = new
org.drip.measure.realization.JumpDiffusionVertex[iNumVertex];
aJDV[iNumVertex - 1] = jdv;
if (iNumVertex != adblTimeIncrement.length + 1) return null;
for (int i = iNumVertex - 2; i >= 0; --i) {
org.drip.measure.realization.JumpDiffusionEdge jde = incrementReverse (jdvPrev, aJDEU[i],
adblTimeIncrement[i]);
if (null == jde) return null;
try {
org.drip.measure.realization.StochasticEdgeJump sej = jde.stochasticJumpEdge();
boolean bJumpOccurred = false;
double dblHazardIntegral = 0.;
if (null != sej) {
bJumpOccurred = sej.jumpOccurred();
dblHazardIntegral = sej.hazardIntegral();
}
jdvPrev = aJDV[i] = new org.drip.measure.realization.JumpDiffusionVertex (jdvPrev.time() -
adblTimeIncrement[i], jde.finish(), jdvPrev.cumulativeHazardIntegral() +
dblHazardIntegral, bJumpOccurred || jdvPrev.jumpOccurred());
} catch (java.lang.Exception e) {
e.printStackTrace();
return null;
}
}
return aJDV;
}
/**
* Generate the Adjacent JumpDiffusionEdge Instance from the specified Random Variate and a Weiner Driver
*
* @param jdv The JumpDiffusionVertex Instance
* @param dblTimeIncrement The Time Increment Evolution Unit
*
* @return The Adjacent JumpDiffusionEdge Instance
*/
public org.drip.measure.realization.JumpDiffusionEdge weinerIncrement (
final org.drip.measure.realization.JumpDiffusionVertex jdv,
final double dblTimeIncrement)
{
try {
return increment (jdv, org.drip.measure.realization.JumpDiffusionEdgeUnit.GaussianDiffusion
(dblTimeIncrement), dblTimeIncrement);
} catch (java.lang.Exception e) {
e.printStackTrace();
}
return null;
}
/**
* Generate the Adjacent JumpDiffusionEdge Instance from the specified Random Variate and a Jump Driver
*
* @param jdv The JumpDiffusionVertex Instance
* @param dblTimeIncrement The Time Increment Evolution Unit
*
* @return The Adjacent JumpDiffusionEdge Instance
*/
public org.drip.measure.realization.JumpDiffusionEdge jumpIncrement (
final org.drip.measure.realization.JumpDiffusionVertex jdv,
final double dblTimeIncrement)
{
return increment (jdv, org.drip.measure.realization.JumpDiffusionEdgeUnit.UniformJump
(dblTimeIncrement), dblTimeIncrement);
}
/**
* Generate the Adjacent JumpDiffusionEdge Instance from the specified Random Variate and Jump/Weiner
* Drivers
*
* @param jdv The JumpDiffusionVertex Instance
* @param dblTimeIncrement The Time Increment Evolution Unit
*
* @return The Adjacent JumpDiffusionEdge Instance
*/
public org.drip.measure.realization.JumpDiffusionEdge jumpWeinerIncrement (
final org.drip.measure.realization.JumpDiffusionVertex jdv,
final double dblTimeIncrement)
{
try {
return increment (jdv, new org.drip.measure.realization.JumpDiffusionEdgeUnit (dblTimeIncrement,
org.drip.measure.gaussian.NormalQuadrature.Random(), java.lang.Math.random()),
dblTimeIncrement);
} catch (java.lang.Exception e) {
e.printStackTrace();
}
return null;
}
/**
* Generate the Adjacent JumpDiffusionEdge Instance from the specified Random Variate and Weiner/Jump
* Drivers
*
* @param jdv The JumpDiffusionVertex Instance
* @param dblTimeIncrement The Time Increment Evolution Unit
*
* @return The Adjacent JumpDiffusionEdge Instance
*/
public org.drip.measure.realization.JumpDiffusionEdge weinerJumpIncrement (
final org.drip.measure.realization.JumpDiffusionVertex jdv,
final double dblTimeIncrement)
{
try {
return increment (jdv, new org.drip.measure.realization.JumpDiffusionEdgeUnit (dblTimeIncrement,
org.drip.measure.gaussian.NormalQuadrature.Random(), java.lang.Math.random()),
dblTimeIncrement);
} catch (java.lang.Exception e) {
e.printStackTrace();
}
return null;
}
}