MultivariateDiscrete.java

  1. package org.drip.measure.statistics;

  2. /*
  3.  * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
  4.  */

  5. /*!
  6.  * Copyright (C) 2020 Lakshmi Krishnamurthy
  7.  * Copyright (C) 2019 Lakshmi Krishnamurthy
  8.  * Copyright (C) 2018 Lakshmi Krishnamurthy
  9.  * Copyright (C) 2017 Lakshmi Krishnamurthy
  10.  *
  11.  *  This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
  12.  *      asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
  13.  *      analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
  14.  *      equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
  15.  *      numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
  16.  *      and computational support.
  17.  *  
  18.  *      https://lakshmidrip.github.io/DROP/
  19.  *  
  20.  *  DROP is composed of three modules:
  21.  *  
  22.  *  - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
  23.  *  - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
  24.  *  - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
  25.  *
  26.  *  DROP Product Core implements libraries for the following:
  27.  *  - Fixed Income Analytics
  28.  *  - Loan Analytics
  29.  *  - Transaction Cost Analytics
  30.  *
  31.  *  DROP Portfolio Core implements libraries for the following:
  32.  *  - Asset Allocation Analytics
  33.  *  - Asset Liability Management Analytics
  34.  *  - Capital Estimation Analytics
  35.  *  - Exposure Analytics
  36.  *  - Margin Analytics
  37.  *  - XVA Analytics
  38.  *
  39.  *  DROP Computational Core implements libraries for the following:
  40.  *  - Algorithm Support
  41.  *  - Computation Support
  42.  *  - Function Analysis
  43.  *  - Model Validation
  44.  *  - Numerical Analysis
  45.  *  - Numerical Optimizer
  46.  *  - Spline Builder
  47.  *  - Statistical Learning
  48.  *
  49.  *  Documentation for DROP is Spread Over:
  50.  *
  51.  *  - Main                     => https://lakshmidrip.github.io/DROP/
  52.  *  - Wiki                     => https://github.com/lakshmiDRIP/DROP/wiki
  53.  *  - GitHub                   => https://github.com/lakshmiDRIP/DROP
  54.  *  - Repo Layout Taxonomy     => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
  55.  *  - Javadoc                  => https://lakshmidrip.github.io/DROP/Javadoc/index.html
  56.  *  - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
  57.  *  - Release Versions         => https://lakshmidrip.github.io/DROP/version.html
  58.  *  - Community Credits        => https://lakshmidrip.github.io/DROP/credits.html
  59.  *  - Issues Catalog           => https://github.com/lakshmiDRIP/DROP/issues
  60.  *  - JUnit                    => https://lakshmidrip.github.io/DROP/junit/index.html
  61.  *  - Jacoco                   => https://lakshmidrip.github.io/DROP/jacoco/index.html
  62.  *
  63.  *  Licensed under the Apache License, Version 2.0 (the "License");
  64.  *      you may not use this file except in compliance with the License.
  65.  *  
  66.  *  You may obtain a copy of the License at
  67.  *      http://www.apache.org/licenses/LICENSE-2.0
  68.  *  
  69.  *  Unless required by applicable law or agreed to in writing, software
  70.  *      distributed under the License is distributed on an "AS IS" BASIS,
  71.  *      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  72.  *  
  73.  *  See the License for the specific language governing permissions and
  74.  *      limitations under the License.
  75.  */

  76. /**
  77.  * <i>MultivariateDiscrete</i> analyzes and computes the Moment and Metric Statistics for the Realized
  78.  * Multivariate Sequence.
  79.  *
  80.  *  <br><br>
  81.  *  <ul>
  82.  *      <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
  83.  *      <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalAnalysisLibrary.md">Numerical Analysis Library</a></li>
  84.  *      <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/README.md">R<sup>d</sup> Continuous/Discrete Probability Measures</a></li>
  85.  *      <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/statistics/README.md">R<sup>1</sup> R<sup>d</sup> Thin Thick Moments</a></li>
  86.  *  </ul>
  87.  *
  88.  * @author Lakshmi Krishnamurthy
  89.  */

  90. public class MultivariateDiscrete {
  91.     private double[] _adblMean = null;
  92.     private double[] _adblError = null;
  93.     private double[] _adblVariance = null;
  94.     private double[][] _aadblCovariance = null;
  95.     private double[][] _aadblCorrelation = null;
  96.     private double[] _adblStandardDeviation = null;

  97.     /**
  98.      * MultivariateDiscrete Constructor
  99.      *
  100.      * @param aadblSequence The Array of Multivariate Realizations
  101.      *
  102.      * @throws java.lang.Exception Thrown if the Inputs are Invalid
  103.      */

  104.     public MultivariateDiscrete (
  105.         final double[][] aadblSequence)
  106.         throws java.lang.Exception
  107.     {
  108.         if (null == aadblSequence)
  109.             throw new java.lang.Exception ("MultivariateDiscrete Constructor => Invalid Inputs");

  110.         int iNumVariate = -1;
  111.         int iSequenceSize = aadblSequence.length;

  112.         if (0 == iSequenceSize)
  113.             throw new java.lang.Exception ("MultivariateDiscrete Constructor => Invalid Inputs");

  114.         for (int iSequence = 0; iSequence < iSequenceSize; ++iSequence) {
  115.             if (null == aadblSequence[iSequence] || !org.drip.numerical.common.NumberUtil.IsValid
  116.                 (aadblSequence[iSequence]))
  117.                 throw new java.lang.Exception ("MultivariateDiscrete Constructor => Invalid Inputs");

  118.             if (0 == iSequence) {
  119.                 if (0 == (iNumVariate = aadblSequence[0].length))
  120.                     throw new java.lang.Exception ("MultivariateDiscrete Constructor => Invalid Inputs");

  121.                 _adblMean = new double[iNumVariate];
  122.                 _adblError = new double[iNumVariate];
  123.                 _adblVariance = new double[iNumVariate];
  124.                 _adblStandardDeviation = new double[iNumVariate];
  125.                 _aadblCovariance = new double[iNumVariate][iNumVariate];
  126.                 _aadblCorrelation = new double[iNumVariate][iNumVariate];

  127.                 for (int iVariate = 0; iVariate < iNumVariate; ++iVariate) {
  128.                     _adblMean[iVariate] = 0.;
  129.                     _adblError[iVariate] = 0.;

  130.                     for (int iVariateOther = 0; iVariateOther < iNumVariate; ++iVariateOther)
  131.                         _aadblCovariance[iVariate][iVariateOther] = 0.;
  132.                 }
  133.             } else if (iNumVariate != aadblSequence[iSequence].length)
  134.                 throw new java.lang.Exception ("MultivariateDiscrete Constructor => Invalid Inputs");

  135.             for (int iVariate = 0; iVariate < iNumVariate; ++iVariate)
  136.                 _adblMean[iVariate] += aadblSequence[iSequence][iVariate];
  137.         }

  138.         for (int iVariate = 0; iVariate < iNumVariate; ++iVariate)
  139.             _adblMean[iVariate] /= iSequenceSize;

  140.         for (int iSequence = 0; iSequence < iSequenceSize; ++iSequence) {
  141.             for (int iVariate = 0; iVariate < iNumVariate; ++iVariate) {
  142.                 double dblOffsetFromMean = aadblSequence[iSequence][iVariate] - _adblMean[iVariate];

  143.                 _adblError[iVariate] += java.lang.Math.abs (dblOffsetFromMean);

  144.                 for (int iVariateOther = 0; iVariateOther < iNumVariate; ++iVariateOther)
  145.                     _aadblCovariance[iVariate][iVariateOther] += dblOffsetFromMean *
  146.                         (aadblSequence[iSequence][iVariateOther] - _adblMean[iVariateOther]);
  147.             }
  148.         }

  149.         for (int iVariate = 0; iVariate < iNumVariate; ++iVariate) {
  150.             _adblError[iVariate] /= iSequenceSize;

  151.             for (int iVariateOther = 0; iVariateOther < iNumVariate; ++iVariateOther)
  152.                 _aadblCovariance[iVariate][iVariateOther] /= iSequenceSize;

  153.             _adblStandardDeviation[iVariate] = java.lang.Math.sqrt (_adblVariance[iVariate] =
  154.                 _aadblCovariance[iVariate][iVariate]);
  155.         }

  156.         for (int iVariate = 0; iVariate < iNumVariate; ++iVariate) {
  157.             for (int iVariateOther = 0; iVariateOther < iNumVariate; ++iVariateOther)
  158.                 _aadblCorrelation[iVariate][iVariateOther] = _aadblCovariance[iVariate][iVariateOther] /
  159.                     (_adblStandardDeviation[iVariate] * _adblStandardDeviation[iVariateOther]);
  160.         }
  161.     }

  162.     /**
  163.      * Retrieve the Multivariate Means
  164.      *
  165.      * @return The Multivariate Means
  166.      */

  167.     public double[] mean()
  168.     {
  169.         return _adblMean;
  170.     }

  171.     /**
  172.      * Retrieve the Multivariate Sequence "Error"
  173.      *
  174.      * @return The Multivariate Sequence "Error"
  175.      */

  176.     public double[] error()
  177.     {
  178.         return _adblError;
  179.     }

  180.     /**
  181.      * Retrieve the Multivariate Covariance
  182.      *
  183.      * @return The Multivariate Covariance
  184.      */

  185.     public double[][] covariance()
  186.     {
  187.         return _aadblCovariance;
  188.     }

  189.     /**
  190.      * Retrieve the Multivariate Correlation
  191.      *
  192.      * @return The Multivariate Correlation
  193.      */

  194.     public double[][] correlation()
  195.     {
  196.         return _aadblCorrelation;
  197.     }

  198.     /**
  199.      * Retrieve the Multivariate Variance
  200.      *
  201.      * @return The Multivariate Variance
  202.      */

  203.     public double[] variance()
  204.     {
  205.         return _adblVariance;
  206.     }

  207.     /**
  208.      * Retrieve the Multivariate Standard Deviation
  209.      *
  210.      * @return The Multivariate Standard Deviation
  211.      */

  212.     public double[] standardDeviation()
  213.     {
  214.         return _adblStandardDeviation;
  215.     }
  216. }