MultivariateDiscrete.java
- package org.drip.measure.statistics;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2020 Lakshmi Krishnamurthy
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- * Copyright (C) 2018 Lakshmi Krishnamurthy
- * Copyright (C) 2017 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
- * asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
- * analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
- * equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
- * numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
- * and computational support.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three modules:
- *
- * - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
- *
- * DROP Product Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Loan Analytics
- * - Transaction Cost Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Asset Liability Management Analytics
- * - Capital Estimation Analytics
- * - Exposure Analytics
- * - Margin Analytics
- * - XVA Analytics
- *
- * DROP Computational Core implements libraries for the following:
- * - Algorithm Support
- * - Computation Support
- * - Function Analysis
- * - Model Validation
- * - Numerical Analysis
- * - Numerical Optimizer
- * - Spline Builder
- * - Statistical Learning
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>MultivariateDiscrete</i> analyzes and computes the Moment and Metric Statistics for the Realized
- * Multivariate Sequence.
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalAnalysisLibrary.md">Numerical Analysis Library</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/README.md">R<sup>d</sup> Continuous/Discrete Probability Measures</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/statistics/README.md">R<sup>1</sup> R<sup>d</sup> Thin Thick Moments</a></li>
- * </ul>
- *
- * @author Lakshmi Krishnamurthy
- */
- public class MultivariateDiscrete {
- private double[] _adblMean = null;
- private double[] _adblError = null;
- private double[] _adblVariance = null;
- private double[][] _aadblCovariance = null;
- private double[][] _aadblCorrelation = null;
- private double[] _adblStandardDeviation = null;
- /**
- * MultivariateDiscrete Constructor
- *
- * @param aadblSequence The Array of Multivariate Realizations
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public MultivariateDiscrete (
- final double[][] aadblSequence)
- throws java.lang.Exception
- {
- if (null == aadblSequence)
- throw new java.lang.Exception ("MultivariateDiscrete Constructor => Invalid Inputs");
- int iNumVariate = -1;
- int iSequenceSize = aadblSequence.length;
- if (0 == iSequenceSize)
- throw new java.lang.Exception ("MultivariateDiscrete Constructor => Invalid Inputs");
- for (int iSequence = 0; iSequence < iSequenceSize; ++iSequence) {
- if (null == aadblSequence[iSequence] || !org.drip.numerical.common.NumberUtil.IsValid
- (aadblSequence[iSequence]))
- throw new java.lang.Exception ("MultivariateDiscrete Constructor => Invalid Inputs");
- if (0 == iSequence) {
- if (0 == (iNumVariate = aadblSequence[0].length))
- throw new java.lang.Exception ("MultivariateDiscrete Constructor => Invalid Inputs");
- _adblMean = new double[iNumVariate];
- _adblError = new double[iNumVariate];
- _adblVariance = new double[iNumVariate];
- _adblStandardDeviation = new double[iNumVariate];
- _aadblCovariance = new double[iNumVariate][iNumVariate];
- _aadblCorrelation = new double[iNumVariate][iNumVariate];
- for (int iVariate = 0; iVariate < iNumVariate; ++iVariate) {
- _adblMean[iVariate] = 0.;
- _adblError[iVariate] = 0.;
- for (int iVariateOther = 0; iVariateOther < iNumVariate; ++iVariateOther)
- _aadblCovariance[iVariate][iVariateOther] = 0.;
- }
- } else if (iNumVariate != aadblSequence[iSequence].length)
- throw new java.lang.Exception ("MultivariateDiscrete Constructor => Invalid Inputs");
- for (int iVariate = 0; iVariate < iNumVariate; ++iVariate)
- _adblMean[iVariate] += aadblSequence[iSequence][iVariate];
- }
- for (int iVariate = 0; iVariate < iNumVariate; ++iVariate)
- _adblMean[iVariate] /= iSequenceSize;
- for (int iSequence = 0; iSequence < iSequenceSize; ++iSequence) {
- for (int iVariate = 0; iVariate < iNumVariate; ++iVariate) {
- double dblOffsetFromMean = aadblSequence[iSequence][iVariate] - _adblMean[iVariate];
- _adblError[iVariate] += java.lang.Math.abs (dblOffsetFromMean);
- for (int iVariateOther = 0; iVariateOther < iNumVariate; ++iVariateOther)
- _aadblCovariance[iVariate][iVariateOther] += dblOffsetFromMean *
- (aadblSequence[iSequence][iVariateOther] - _adblMean[iVariateOther]);
- }
- }
- for (int iVariate = 0; iVariate < iNumVariate; ++iVariate) {
- _adblError[iVariate] /= iSequenceSize;
- for (int iVariateOther = 0; iVariateOther < iNumVariate; ++iVariateOther)
- _aadblCovariance[iVariate][iVariateOther] /= iSequenceSize;
- _adblStandardDeviation[iVariate] = java.lang.Math.sqrt (_adblVariance[iVariate] =
- _aadblCovariance[iVariate][iVariate]);
- }
- for (int iVariate = 0; iVariate < iNumVariate; ++iVariate) {
- for (int iVariateOther = 0; iVariateOther < iNumVariate; ++iVariateOther)
- _aadblCorrelation[iVariate][iVariateOther] = _aadblCovariance[iVariate][iVariateOther] /
- (_adblStandardDeviation[iVariate] * _adblStandardDeviation[iVariateOther]);
- }
- }
- /**
- * Retrieve the Multivariate Means
- *
- * @return The Multivariate Means
- */
- public double[] mean()
- {
- return _adblMean;
- }
- /**
- * Retrieve the Multivariate Sequence "Error"
- *
- * @return The Multivariate Sequence "Error"
- */
- public double[] error()
- {
- return _adblError;
- }
- /**
- * Retrieve the Multivariate Covariance
- *
- * @return The Multivariate Covariance
- */
- public double[][] covariance()
- {
- return _aadblCovariance;
- }
- /**
- * Retrieve the Multivariate Correlation
- *
- * @return The Multivariate Correlation
- */
- public double[][] correlation()
- {
- return _aadblCorrelation;
- }
- /**
- * Retrieve the Multivariate Variance
- *
- * @return The Multivariate Variance
- */
- public double[] variance()
- {
- return _adblVariance;
- }
- /**
- * Retrieve the Multivariate Standard Deviation
- *
- * @return The Multivariate Standard Deviation
- */
- public double[] standardDeviation()
- {
- return _adblStandardDeviation;
- }
- }