UnivariateDiscreteThin.java

  1. package org.drip.measure.statistics;

  2. /*
  3.  * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
  4.  */

  5. /*!
  6.  * Copyright (C) 2020 Lakshmi Krishnamurthy
  7.  * Copyright (C) 2019 Lakshmi Krishnamurthy
  8.  * Copyright (C) 2018 Lakshmi Krishnamurthy
  9.  * Copyright (C) 2017 Lakshmi Krishnamurthy
  10.  *
  11.  *  This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
  12.  *      asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
  13.  *      analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
  14.  *      equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
  15.  *      numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
  16.  *      and computational support.
  17.  *  
  18.  *      https://lakshmidrip.github.io/DROP/
  19.  *  
  20.  *  DROP is composed of three modules:
  21.  *  
  22.  *  - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
  23.  *  - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
  24.  *  - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
  25.  *
  26.  *  DROP Product Core implements libraries for the following:
  27.  *  - Fixed Income Analytics
  28.  *  - Loan Analytics
  29.  *  - Transaction Cost Analytics
  30.  *
  31.  *  DROP Portfolio Core implements libraries for the following:
  32.  *  - Asset Allocation Analytics
  33.  *  - Asset Liability Management Analytics
  34.  *  - Capital Estimation Analytics
  35.  *  - Exposure Analytics
  36.  *  - Margin Analytics
  37.  *  - XVA Analytics
  38.  *
  39.  *  DROP Computational Core implements libraries for the following:
  40.  *  - Algorithm Support
  41.  *  - Computation Support
  42.  *  - Function Analysis
  43.  *  - Model Validation
  44.  *  - Numerical Analysis
  45.  *  - Numerical Optimizer
  46.  *  - Spline Builder
  47.  *  - Statistical Learning
  48.  *
  49.  *  Documentation for DROP is Spread Over:
  50.  *
  51.  *  - Main                     => https://lakshmidrip.github.io/DROP/
  52.  *  - Wiki                     => https://github.com/lakshmiDRIP/DROP/wiki
  53.  *  - GitHub                   => https://github.com/lakshmiDRIP/DROP
  54.  *  - Repo Layout Taxonomy     => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
  55.  *  - Javadoc                  => https://lakshmidrip.github.io/DROP/Javadoc/index.html
  56.  *  - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
  57.  *  - Release Versions         => https://lakshmidrip.github.io/DROP/version.html
  58.  *  - Community Credits        => https://lakshmidrip.github.io/DROP/credits.html
  59.  *  - Issues Catalog           => https://github.com/lakshmiDRIP/DROP/issues
  60.  *  - JUnit                    => https://lakshmidrip.github.io/DROP/junit/index.html
  61.  *  - Jacoco                   => https://lakshmidrip.github.io/DROP/jacoco/index.html
  62.  *
  63.  *  Licensed under the Apache License, Version 2.0 (the "License");
  64.  *      you may not use this file except in compliance with the License.
  65.  *  
  66.  *  You may obtain a copy of the License at
  67.  *      http://www.apache.org/licenses/LICENSE-2.0
  68.  *  
  69.  *  Unless required by applicable law or agreed to in writing, software
  70.  *      distributed under the License is distributed on an "AS IS" BASIS,
  71.  *      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  72.  *  
  73.  *  See the License for the specific language governing permissions and
  74.  *      limitations under the License.
  75.  */

  76. /**
  77.  * <i>UnivariateDiscreteThin</i> analyzes and computes the "Thin" Statistics for the Realized Univariate
  78.  * Sequence.
  79.  *
  80.  *  <br><br>
  81.  *  <ul>
  82.  *      <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
  83.  *      <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalAnalysisLibrary.md">Numerical Analysis Library</a></li>
  84.  *      <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/README.md">R<sup>d</sup> Continuous/Discrete Probability Measures</a></li>
  85.  *      <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/statistics/README.md">R<sup>1</sup> R<sup>d</sup> Thin Thick Moments</a></li>
  86.  *  </ul>
  87.  *
  88.  * @author Lakshmi Krishnamurthy
  89.  */

  90. public class UnivariateDiscreteThin {
  91.     private double _dblError = java.lang.Double.NaN;
  92.     private double _dblAverage = java.lang.Double.NaN;
  93.     private double _dblMaximum = java.lang.Double.NaN;
  94.     private double _dblMinimum = java.lang.Double.NaN;

  95.     /**
  96.      * Generate a UnivariateDiscreteThin Instance from the specified List of Double's
  97.      *
  98.      * @param doubleList The List of Doubles
  99.      *
  100.      * @return The UnivariateDiscreteThin Instance
  101.      */

  102.     public static final UnivariateDiscreteThin FromList (
  103.         final java.util.List<java.lang.Double> doubleList)
  104.     {
  105.         if (null == doubleList)
  106.         {
  107.             return null;
  108.         }

  109.         int listSize = doubleList.size();

  110.         if (0 == listSize)
  111.         {
  112.             return null;
  113.         }

  114.         double[] sequence = new double[listSize];

  115.         for (int index = 0; index < listSize; ++index)
  116.         {
  117.             sequence[index] = doubleList.get (index);
  118.         }

  119.         try
  120.         {
  121.             return new UnivariateDiscreteThin (sequence);
  122.         }
  123.         catch (java.lang.Exception e)
  124.         {
  125.             e.printStackTrace();
  126.         }

  127.         return null;
  128.     }

  129.     /**
  130.      * UnivariateDiscreteThin Constructor
  131.      *
  132.      * @param adblSequence The Univariate Sequence
  133.      *
  134.      * @throws java.lang.Exception Thrown if the Inputs are Invalid
  135.      */

  136.     public UnivariateDiscreteThin (
  137.         final double[] adblSequence)
  138.         throws java.lang.Exception
  139.     {
  140.         if (null == adblSequence)
  141.             throw new java.lang.Exception ("UnivariateDiscreteThin Constructor => Invalid Inputs");

  142.         _dblError = 0.;
  143.         _dblAverage = 0.;
  144.         _dblMaximum = 0.;
  145.         _dblMinimum = 0.;
  146.         int iSequenceSize = adblSequence.length;

  147.         if (0 == iSequenceSize)
  148.             throw new java.lang.Exception ("UnivariateDiscreteThin Constructor => Invalid Inputs");

  149.         for (int i = 0; i < iSequenceSize; ++i) {
  150.             if (!org.drip.numerical.common.NumberUtil.IsValid (adblSequence[i]))
  151.                 throw new java.lang.Exception ("UnivariateDiscreteThin Constructor => Invalid Inputs");

  152.             if (0 == i) {
  153.                 _dblMaximum = adblSequence[0];
  154.                 _dblMinimum = adblSequence[0];
  155.             } else {
  156.                 if (_dblMaximum < adblSequence[i]) _dblMaximum = adblSequence[i];

  157.                 if (_dblMinimum > adblSequence[i]) _dblMinimum = adblSequence[i];
  158.             }

  159.             _dblAverage = _dblAverage + adblSequence[i];
  160.         }

  161.         _dblAverage /= iSequenceSize;

  162.         for (int i = 0; i < iSequenceSize; ++i)
  163.             _dblError = _dblError + java.lang.Math.abs (_dblAverage - adblSequence[i]);

  164.         _dblError /= iSequenceSize;
  165.     }

  166.     /**
  167.      * Retrieve the Sequence Average
  168.      *
  169.      * @return The Sequence Average
  170.      */

  171.     public double average()
  172.     {
  173.         return _dblAverage;
  174.     }

  175.     /**
  176.      * Retrieve the Sequence Error
  177.      *
  178.      * @return The Sequence Error
  179.      */

  180.     public double error()
  181.     {
  182.         return _dblError;
  183.     }

  184.     /**
  185.      * Retrieve the Sequence Maximum
  186.      *
  187.      * @return The Sequence Maximum
  188.      */

  189.     public double maximum()
  190.     {
  191.         return _dblMaximum;
  192.     }

  193.     /**
  194.      * Retrieve the Sequence Minimum
  195.      *
  196.      * @return The Sequence Minimum
  197.      */

  198.     public double minimum()
  199.     {
  200.         return _dblMinimum;
  201.     }
  202. }