UnivariateDiscreteThin.java
- package org.drip.measure.statistics;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2020 Lakshmi Krishnamurthy
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- * Copyright (C) 2018 Lakshmi Krishnamurthy
- * Copyright (C) 2017 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
- * asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
- * analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
- * equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
- * numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
- * and computational support.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three modules:
- *
- * - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
- *
- * DROP Product Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Loan Analytics
- * - Transaction Cost Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Asset Liability Management Analytics
- * - Capital Estimation Analytics
- * - Exposure Analytics
- * - Margin Analytics
- * - XVA Analytics
- *
- * DROP Computational Core implements libraries for the following:
- * - Algorithm Support
- * - Computation Support
- * - Function Analysis
- * - Model Validation
- * - Numerical Analysis
- * - Numerical Optimizer
- * - Spline Builder
- * - Statistical Learning
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>UnivariateDiscreteThin</i> analyzes and computes the "Thin" Statistics for the Realized Univariate
- * Sequence.
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalAnalysisLibrary.md">Numerical Analysis Library</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/README.md">R<sup>d</sup> Continuous/Discrete Probability Measures</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/statistics/README.md">R<sup>1</sup> R<sup>d</sup> Thin Thick Moments</a></li>
- * </ul>
- *
- * @author Lakshmi Krishnamurthy
- */
- public class UnivariateDiscreteThin {
- private double _dblError = java.lang.Double.NaN;
- private double _dblAverage = java.lang.Double.NaN;
- private double _dblMaximum = java.lang.Double.NaN;
- private double _dblMinimum = java.lang.Double.NaN;
- /**
- * Generate a UnivariateDiscreteThin Instance from the specified List of Double's
- *
- * @param doubleList The List of Doubles
- *
- * @return The UnivariateDiscreteThin Instance
- */
- public static final UnivariateDiscreteThin FromList (
- final java.util.List<java.lang.Double> doubleList)
- {
- if (null == doubleList)
- {
- return null;
- }
- int listSize = doubleList.size();
- if (0 == listSize)
- {
- return null;
- }
- double[] sequence = new double[listSize];
- for (int index = 0; index < listSize; ++index)
- {
- sequence[index] = doubleList.get (index);
- }
- try
- {
- return new UnivariateDiscreteThin (sequence);
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * UnivariateDiscreteThin Constructor
- *
- * @param adblSequence The Univariate Sequence
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public UnivariateDiscreteThin (
- final double[] adblSequence)
- throws java.lang.Exception
- {
- if (null == adblSequence)
- throw new java.lang.Exception ("UnivariateDiscreteThin Constructor => Invalid Inputs");
- _dblError = 0.;
- _dblAverage = 0.;
- _dblMaximum = 0.;
- _dblMinimum = 0.;
- int iSequenceSize = adblSequence.length;
- if (0 == iSequenceSize)
- throw new java.lang.Exception ("UnivariateDiscreteThin Constructor => Invalid Inputs");
- for (int i = 0; i < iSequenceSize; ++i) {
- if (!org.drip.numerical.common.NumberUtil.IsValid (adblSequence[i]))
- throw new java.lang.Exception ("UnivariateDiscreteThin Constructor => Invalid Inputs");
- if (0 == i) {
- _dblMaximum = adblSequence[0];
- _dblMinimum = adblSequence[0];
- } else {
- if (_dblMaximum < adblSequence[i]) _dblMaximum = adblSequence[i];
- if (_dblMinimum > adblSequence[i]) _dblMinimum = adblSequence[i];
- }
- _dblAverage = _dblAverage + adblSequence[i];
- }
- _dblAverage /= iSequenceSize;
- for (int i = 0; i < iSequenceSize; ++i)
- _dblError = _dblError + java.lang.Math.abs (_dblAverage - adblSequence[i]);
- _dblError /= iSequenceSize;
- }
- /**
- * Retrieve the Sequence Average
- *
- * @return The Sequence Average
- */
- public double average()
- {
- return _dblAverage;
- }
- /**
- * Retrieve the Sequence Error
- *
- * @return The Sequence Error
- */
- public double error()
- {
- return _dblError;
- }
- /**
- * Retrieve the Sequence Maximum
- *
- * @return The Sequence Maximum
- */
- public double maximum()
- {
- return _dblMaximum;
- }
- /**
- * Retrieve the Sequence Minimum
- *
- * @return The Sequence Minimum
- */
- public double minimum()
- {
- return _dblMinimum;
- }
- }