UnivariateMoments.java
- package org.drip.measure.statistics;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2020 Lakshmi Krishnamurthy
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- * Copyright (C) 2018 Lakshmi Krishnamurthy
- * Copyright (C) 2017 Lakshmi Krishnamurthy
- * Copyright (C) 2016 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
- * asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
- * analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
- * equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
- * numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
- * and computational support.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three modules:
- *
- * - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
- *
- * DROP Product Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Loan Analytics
- * - Transaction Cost Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Asset Liability Management Analytics
- * - Capital Estimation Analytics
- * - Exposure Analytics
- * - Margin Analytics
- * - XVA Analytics
- *
- * DROP Computational Core implements libraries for the following:
- * - Algorithm Support
- * - Computation Support
- * - Function Analysis
- * - Model Validation
- * - Numerical Analysis
- * - Numerical Optimizer
- * - Spline Builder
- * - Statistical Learning
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>UnivariateMoments</i> generates and holds the Specified Univariate Series Mean, Variance, and a few
- * selected Moments.
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalAnalysisLibrary.md">Numerical Analysis Library</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/README.md">R<sup>d</sup> Continuous/Discrete Probability Measures</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/statistics/README.md">R<sup>1</sup> R<sup>d</sup> Thin Thick Moments</a></li>
- * </ul>
- *
- * @author Lakshmi Krishnamurthy
- */
- public class UnivariateMoments {
- private int _iNumSample = 0;
- private java.lang.String _strName = "";
- private double _dblMean = java.lang.Double.NaN;
- private double _dblVariance = java.lang.Double.NaN;
- private java.util.Map<java.lang.Integer, java.lang.Double> _mapMoment = null;
- /**
- * Construct a UnivariateMoments Instance for the specified Series
- *
- * @param strName Series Name
- * @param adblEntry Series Entry
- * @param aiMoment Array of Moments to be Calculated
- *
- * @return The UnivariateMoments Instance
- */
- public static final UnivariateMoments Standard (
- final java.lang.String strName,
- final double[] adblEntry,
- final int[] aiMoment)
- {
- if (null == adblEntry) return null;
- double dblMean = 0.;
- double dblVariance = 0.;
- int iNumSample = adblEntry.length;
- int iNumMoment = null == aiMoment ? 0 : aiMoment.length;
- double[] adblMoment = 0 == iNumMoment ? null : new double[iNumMoment];
- java.util.Map<java.lang.Integer, java.lang.Double> mapMoment = 0 == iNumMoment ? null : new
- java.util.TreeMap<java.lang.Integer, java.lang.Double>();
- if (0 == iNumSample) return null;
- for (int i = 0; i < iNumSample; ++i) {
- if (!org.drip.numerical.common.NumberUtil.IsValid (adblEntry[i])) return null;
- dblMean += adblEntry[i];
- }
- dblMean /= iNumSample;
- for (int j = 0; j < iNumMoment; ++j)
- adblMoment[j] = 0.;
- for (int i = 0; i < iNumSample; ++i) {
- double dblError = dblMean - adblEntry[i];
- dblVariance += (dblError * dblError);
- for (int j = 0; j < iNumMoment; ++j)
- adblMoment[j] = adblMoment[j] + java.lang.Math.pow (dblError, aiMoment[j]);
- }
- for (int j = 0; j < iNumMoment; ++j)
- mapMoment.put (aiMoment[j], adblMoment[j]);
- try {
- return new UnivariateMoments (strName, dblMean, dblVariance / iNumSample, iNumSample, mapMoment);
- } catch (java.lang.Exception e) {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Construct a UnivariateMoments Instance for the specified Series
- *
- * @param strName Series Name
- * @param adblEntry Series Entry
- *
- * @return The UnivariateMoments Instance
- */
- public static final UnivariateMoments Standard (
- final java.lang.String strName,
- final double[] adblEntry)
- {
- return Standard (strName, adblEntry, null);
- }
- protected UnivariateMoments (
- final java.lang.String strName,
- final double dblMean,
- final double dblVariance,
- final int iNumSample,
- final java.util.Map<java.lang.Integer, java.lang.Double> mapMoment)
- throws java.lang.Exception
- {
- if (null == (_strName = strName) || _strName.isEmpty() || !org.drip.numerical.common.NumberUtil.IsValid
- (_dblMean = dblMean) || !org.drip.numerical.common.NumberUtil.IsValid (_dblVariance = dblVariance) ||
- 0 >= (_iNumSample = iNumSample))
- throw new java.lang.Exception ("UnivariateMetrics Constructor => Invalid Inputs!");
- _mapMoment = mapMoment;
- }
- /**
- * Retrieve the Series Name
- *
- * @return The Series Name
- */
- public java.lang.String name()
- {
- return _strName;
- }
- /**
- * Retrieve the Number of Samples
- *
- * @return The Number of Samples
- */
- public int numSample()
- {
- return _iNumSample;
- }
- /**
- * Retrieve the Series Mean
- *
- * @return The Series Mean
- */
- public double mean()
- {
- return _dblMean;
- }
- /**
- * Retrieve the Series Variance
- *
- * @return The Series Variance
- */
- public double variance()
- {
- return _dblVariance;
- }
- /**
- * Retrieve the Series Standard Deviation
- *
- * @return The Series Standard Deviation
- */
- public double stdDev()
- {
- return java.lang.Math.sqrt (_dblVariance);
- }
- /**
- * Retrieve the Series Standard Error
- *
- * @return The Series Standard Error
- */
- public double stdError()
- {
- return java.lang.Math.sqrt (_dblVariance);
- }
- /**
- * Retrieve the Moments Map
- *
- * @return The Map of Moments
- */
- public java.util.Map<java.lang.Integer, java.lang.Double> momentMap()
- {
- return _mapMoment;
- }
- /**
- * Compute the Series t-Statistic around the Series Hypothesis Pivot
- *
- * @param hypothesisPivot The Series Hypothesis Pivot
- *
- * @return The Series t-Statistic around the Series Hypothesis Pivot
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public double tStatistic (
- final double hypothesisPivot)
- throws java.lang.Exception
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (hypothesisPivot))
- {
- throw new java.lang.Exception ("UnivariateMetrics::tStatistic => Invalid Inputs");
- }
- return (_dblMean - hypothesisPivot) / java.lang.Math.sqrt (_dblVariance);
- }
- /**
- * Compute the Series t-Statistic for Hypothesis Pivot = 0 (e.g., the False Positive NULL Hypothesis for
- * for Homoscedastic Univariate Linear Regression)
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- *
- * @return The Series t-Statistic
- */
- public double tStatistic()
- throws java.lang.Exception
- {
- return _dblMean / java.lang.Math.sqrt (_dblVariance);
- }
- /**
- * Estimate the Offset in Terms of the NUmber of Standard Errors
- *
- * @param x The Observation Point
- *
- * @return The Offset in Terms of the NUmber of Standard Errors
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public double standardErrorOffset (
- final double x)
- throws java.lang.Exception
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (x))
- {
- throw new java.lang.Exception ("UnivariateMetrics::standardErrorOffset => Invalid Inputs");
- }
- return (_dblMean - x) / java.lang.Math.sqrt (_dblVariance);
- }
- /**
- * Retrieve the Degrees of Freedom
- *
- * @return The Degrees of Freedom
- */
- public int degreesOfFreedom()
- {
- return _iNumSample - 1;
- }
- /**
- * Compute the Predictive Confidence Level
- *
- * @return The Predictive Confidence Level
- */
- public double predictiveConfidenceLevel()
- {
- return java.lang.Math.sqrt (_dblVariance * (1. + 1. / (1. + _iNumSample)));
- }
- }