LabelCorrelation.java
- package org.drip.measure.stochastic;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2020 Lakshmi Krishnamurthy
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- * Copyright (C) 2018 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
- * asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
- * analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
- * equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
- * numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
- * and computational support.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three modules:
- *
- * - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
- *
- * DROP Product Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Loan Analytics
- * - Transaction Cost Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Asset Liability Management Analytics
- * - Capital Estimation Analytics
- * - Exposure Analytics
- * - Margin Analytics
- * - XVA Analytics
- *
- * DROP Computational Core implements libraries for the following:
- * - Algorithm Support
- * - Computation Support
- * - Function Analysis
- * - Model Validation
- * - Numerical Analysis
- * - Numerical Optimizer
- * - Spline Builder
- * - Statistical Learning
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>LabelCorrelation</i> holds the Correlations between any Stochastic Variates identified by their Labels.
- * The References are:
- *
- * <br><br>
- * <ul>
- * <li>
- * Andersen, L. B. G., M. Pykhtin, and A. Sokol (2017): Credit Exposure in the Presence of Initial
- * Margin https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2806156 <b>eSSRN</b>
- * </li>
- * <li>
- * Albanese, C., S. Caenazzo, and O. Frankel (2017): Regression Sensitivities for Initial Margin
- * Calculations https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2763488 <b>eSSRN</b>
- * </li>
- * <li>
- * Anfuso, F., D. Aziz, P. Giltinan, and K. Loukopoulus (2017): A Sound Modeling and Back-testing
- * Framework for Forecasting Initial Margin Requirements
- * https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2716279 <b>eSSRN</b>
- * </li>
- * <li>
- * Caspers, P., P. Giltinan, R. Lichters, and N. Nowaczyk (2017): Forecasting Initial Margin
- * Requirements - A Model Evaluation https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2911167
- * <b>eSSRN</b>
- * </li>
- * <li>
- * International Swaps and Derivatives Association (2017): SIMM v2.0 Methodology
- * https://www.isda.org/a/oFiDE/isda-simm-v2.pdf
- * </li>
- * </ul>
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalAnalysisLibrary.md">Numerical Analysis Library</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/README.md">R<sup>d</sup> Continuous/Discrete Probability Measures</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/stochastic/README.md">R<sup>1</sup> R<sup>1</sup> To R<sup>1</sup> Process</a></li>
- * </ul>
- *
- * @author Lakshmi Krishnamurthy
- */
- public class LabelCorrelation extends org.drip.measure.stochastic.LabelBase
- {
- protected double[][] _matrix = null;
- /**
- * LabelCorrelation Constructor
- *
- * @param labelList The List of Labels
- * @param matrix The Correlation Matrix
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public LabelCorrelation (
- final java.util.List<java.lang.String> labelList,
- final double[][] matrix)
- throws java.lang.Exception
- {
- super (labelList);
- if (null == (_matrix = matrix))
- {
- throw new java.lang.Exception ("LabelCorrelation Constructor => Invalid Inputs");
- }
- int labelCount = labelList.size();
- if (0 == labelCount || labelCount != _matrix.length)
- {
- throw new java.lang.Exception ("LabelCorrelation Constructor => Invalid Inputs");
- }
- for (int labelIndex = 0; labelIndex < labelCount; ++labelIndex)
- {
- if (null == _matrix[labelIndex] || labelCount != _matrix[labelIndex].length ||
- !org.drip.numerical.common.NumberUtil.IsValid (_matrix[labelIndex]))
- {
- throw new java.lang.Exception ("LabelCorrelation Constructor => Invalid Inputs");
- }
- }
- }
- /**
- * Retrieve the Cross-Label Correlation Matrix
- *
- * @return The Cross-Label Correlation Matrix
- */
- public double[][] matrix()
- {
- return _matrix;
- }
- /**
- * Retrieve the Correlation Entry for the Pair of Labels
- *
- * @param label1 Label #1
- * @param label2 Label #2
- *
- * @return The Correlation Entry
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public double entry (
- final java.lang.String label1,
- final java.lang.String label2)
- throws java.lang.Exception
- {
- if (null == label1 || !_labelList.contains (label1) ||
- null == label2 || !_labelList.contains (label2))
- {
- throw new java.lang.Exception ("LabelCorrelation::entry => Invalid Inputs");
- }
- return _matrix[_labelIndexMap.get (label1)][_labelIndexMap.get (label2)];
- }
- /**
- * Generate the InterestRateTenorCorrelation Instance that corresponds to the Tenor sub-space
- *
- * @param subTenorList The sub-Tenor List
- *
- * @return The InterestRateTenorCorrelation Instance
- */
- public LabelCorrelation subTenor (
- final java.util.List<java.lang.String> subTenorList)
- {
- if (null == subTenorList)
- {
- return null;
- }
- int subTenorSize = subTenorList.size();
- if (0 == subTenorSize)
- {
- return null;
- }
- double[][] subTenorMatrix = new double[subTenorSize][subTenorSize];
- for (int subTenorOuterIndex = 0; subTenorOuterIndex < subTenorSize; ++subTenorOuterIndex)
- {
- for (int subTenorInnerIndex = 0; subTenorInnerIndex < subTenorSize; ++subTenorInnerIndex)
- {
- try
- {
- subTenorMatrix[subTenorOuterIndex][subTenorInnerIndex] = entry (
- subTenorList.get (subTenorOuterIndex),
- subTenorList.get (subTenorInnerIndex)
- );
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- return null;
- }
- }
- }
- try
- {
- return new LabelCorrelation (
- subTenorList,
- subTenorMatrix
- );
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- }
- return null;
- }
- }