LabelCovariance.java
- package org.drip.measure.stochastic;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2020 Lakshmi Krishnamurthy
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
- * asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
- * analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
- * equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
- * numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
- * and computational support.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three modules:
- *
- * - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
- *
- * DROP Product Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Loan Analytics
- * - Transaction Cost Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Asset Liability Management Analytics
- * - Capital Estimation Analytics
- * - Exposure Analytics
- * - Margin Analytics
- * - XVA Analytics
- *
- * DROP Computational Core implements libraries for the following:
- * - Algorithm Support
- * - Computation Support
- * - Function Analysis
- * - Model Validation
- * - Numerical Analysis
- * - Numerical Optimizer
- * - Spline Builder
- * - Statistical Learning
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>LabelCovariance</i> holds the Covariance between any Stochastic Variates identified by their Labels, as
- * well as their Means. The References are:
- *
- * <br><br>
- * <ul>
- * <li>
- * Andersen, L. B. G., M. Pykhtin, and A. Sokol (2017): Credit Exposure in the Presence of Initial
- * Margin https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2806156 <b>eSSRN</b>
- * </li>
- * <li>
- * Albanese, C., S. Caenazzo, and O. Frankel (2017): Regression Sensitivities for Initial Margin
- * Calculations https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2763488 <b>eSSRN</b>
- * </li>
- * <li>
- * Anfuso, F., D. Aziz, P. Giltinan, and K. Loukopoulus (2017): A Sound Modeling and Back-testing
- * Framework for Forecasting Initial Margin Requirements
- * https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2716279 <b>eSSRN</b>
- * </li>
- * <li>
- * Caspers, P., P. Giltinan, R. Lichters, and N. Nowaczyk (2017): Forecasting Initial Margin
- * Requirements - A Model Evaluation https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2911167
- * <b>eSSRN</b>
- * </li>
- * <li>
- * International Swaps and Derivatives Association (2017): SIMM v2.0 Methodology
- * https://www.isda.org/a/oFiDE/isda-simm-v2.pdf
- * </li>
- * </ul>
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalAnalysisLibrary.md">Numerical Analysis Library</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/README.md">R<sup>d</sup> Continuous/Discrete Probability Measures</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/stochastic/README.md">R<sup>1</sup> R<sup>1</sup> To R<sup>1</sup> Process</a></li>
- * </ul>
- *
- * @author Lakshmi Krishnamurthy
- */
- public class LabelCovariance extends org.drip.measure.stochastic.LabelCorrelation
- {
- private double[] _meanArray = null;
- private double[] _volatilityArray = null;
- private org.drip.measure.gaussian.Covariance _covariance = null;
- /**
- * LabelCovariance Constructor
- *
- * @param labelList The List of Labels
- * @param meanArray Array of Variate Means
- * @param volatilityArray Array of Variate Volatilities
- * @param correlationMatrix The Correlation Matrix
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public LabelCovariance (
- final java.util.List<java.lang.String> labelList,
- final double[] meanArray,
- final double[] volatilityArray,
- final double[][] correlationMatrix)
- throws java.lang.Exception
- {
- super (
- labelList,
- correlationMatrix
- );
- if (null == (_meanArray = meanArray) ||
- null == (_volatilityArray = volatilityArray))
- {
- throw new java.lang.Exception ("LabelCovariance Constructor => Invalid Inputs");
- }
- int variateCount = correlationMatrix.length;
- double[][] covarianceMatrix = new double[variateCount][variateCount];
- if (variateCount != _meanArray.length ||
- variateCount != _volatilityArray.length)
- {
- throw new java.lang.Exception ("LabelCovariance Constructor => Invalid Inputs");
- }
- for (int variateIndexI = 0; variateIndexI < variateCount; ++variateIndexI)
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (_meanArray[variateIndexI]) ||
- !org.drip.numerical.common.NumberUtil.IsValid (_volatilityArray[variateIndexI]) ||
- 0. > _volatilityArray[variateIndexI])
- {
- throw new java.lang.Exception ("LabelCovariance Constructor => Invalid Inputs");
- }
- for (int variateIndexJ = 0; variateIndexJ < variateCount; ++variateIndexJ)
- {
- covarianceMatrix[variateIndexI][variateIndexJ] =
- correlationMatrix[variateIndexI][variateIndexJ] * _volatilityArray[variateIndexI] *
- _volatilityArray[variateIndexJ];
- }
- }
- _covariance = new org.drip.measure.gaussian.Covariance (covarianceMatrix);
- }
- /**
- * Retrieve the Array of Variate Means
- *
- * @return The Array of Variate Means
- */
- public double[] meanArray()
- {
- return _meanArray;
- }
- /**
- * Retrieve the Array of Variate Volatilities
- *
- * @return The Array of Variate Volatilities
- */
- public double[] volatilityArray()
- {
- return _volatilityArray;
- }
- /**
- * Retrieve the Correlation Matrix
- *
- * @return The Correlation Matrix
- */
- public double[][] correlationMatrix()
- {
- return _matrix;
- }
- /**
- * Retrieve the Covariance Matrix
- *
- * @return The Covariance Matrix
- */
- public double[][] covarianceMatrix()
- {
- return _covariance.covarianceMatrix();
- }
- /**
- * Retrieve the Precision Matrix
- *
- * @return The Precision Matrix
- */
- public double[][] precisionMatrix()
- {
- return _covariance.precisionMatrix();
- }
- /**
- * Retrieve the Mean of the Latent State
- *
- * @param label Latent State Label
- *
- * @return Mean of the Latent State
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public double mean (
- final java.lang.String label)
- throws java.lang.Exception
- {
- if (null == label || !_labelList.contains (label))
- {
- throw new java.lang.Exception ("LabelCovariance::mean => Invalid Inputs");
- }
- return _meanArray[_labelIndexMap.get (label)];
- }
- /**
- * Retrieve the Volatility of the Latent State
- *
- * @param label Latent State Label
- *
- * @return Volatility of the Latent State
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public double volatility (
- final java.lang.String label)
- throws java.lang.Exception
- {
- if (null == label || !_labelList.contains (label))
- {
- throw new java.lang.Exception ("LabelCovariance::volatility => Invalid Inputs");
- }
- return _volatilityArray[_labelIndexMap.get (label)];
- }
- }