PowerIterationComponentExtractor.java

  1. package org.drip.numerical.eigen;

  2. /*
  3.  * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
  4.  */

  5. /*!
  6.  * Copyright (C) 2020 Lakshmi Krishnamurthy
  7.  * Copyright (C) 2019 Lakshmi Krishnamurthy
  8.  * Copyright (C) 2018 Lakshmi Krishnamurthy
  9.  * Copyright (C) 2017 Lakshmi Krishnamurthy
  10.  * Copyright (C) 2016 Lakshmi Krishnamurthy
  11.  * Copyright (C) 2015 Lakshmi Krishnamurthy
  12.  *
  13.  *  This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
  14.  *      asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
  15.  *      analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
  16.  *      equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
  17.  *      numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
  18.  *      and computational support.
  19.  *  
  20.  *      https://lakshmidrip.github.io/DROP/
  21.  *  
  22.  *  DROP is composed of three modules:
  23.  *  
  24.  *  - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
  25.  *  - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
  26.  *  - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
  27.  *
  28.  *  DROP Product Core implements libraries for the following:
  29.  *  - Fixed Income Analytics
  30.  *  - Loan Analytics
  31.  *  - Transaction Cost Analytics
  32.  *
  33.  *  DROP Portfolio Core implements libraries for the following:
  34.  *  - Asset Allocation Analytics
  35.  *  - Asset Liability Management Analytics
  36.  *  - Capital Estimation Analytics
  37.  *  - Exposure Analytics
  38.  *  - Margin Analytics
  39.  *  - XVA Analytics
  40.  *
  41.  *  DROP Computational Core implements libraries for the following:
  42.  *  - Algorithm Support
  43.  *  - Computation Support
  44.  *  - Function Analysis
  45.  *  - Model Validation
  46.  *  - Numerical Analysis
  47.  *  - Numerical Optimizer
  48.  *  - Spline Builder
  49.  *  - Statistical Learning
  50.  *
  51.  *  Documentation for DROP is Spread Over:
  52.  *
  53.  *  - Main                     => https://lakshmidrip.github.io/DROP/
  54.  *  - Wiki                     => https://github.com/lakshmiDRIP/DROP/wiki
  55.  *  - GitHub                   => https://github.com/lakshmiDRIP/DROP
  56.  *  - Repo Layout Taxonomy     => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
  57.  *  - Javadoc                  => https://lakshmidrip.github.io/DROP/Javadoc/index.html
  58.  *  - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
  59.  *  - Release Versions         => https://lakshmidrip.github.io/DROP/version.html
  60.  *  - Community Credits        => https://lakshmidrip.github.io/DROP/credits.html
  61.  *  - Issues Catalog           => https://github.com/lakshmiDRIP/DROP/issues
  62.  *  - JUnit                    => https://lakshmidrip.github.io/DROP/junit/index.html
  63.  *  - Jacoco                   => https://lakshmidrip.github.io/DROP/jacoco/index.html
  64.  *
  65.  *  Licensed under the Apache License, Version 2.0 (the "License");
  66.  *      you may not use this file except in compliance with the License.
  67.  *  
  68.  *  You may obtain a copy of the License at
  69.  *      http://www.apache.org/licenses/LICENSE-2.0
  70.  *  
  71.  *  Unless required by applicable law or agreed to in writing, software
  72.  *      distributed under the License is distributed on an "AS IS" BASIS,
  73.  *      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  74.  *  
  75.  *  See the License for the specific language governing permissions and
  76.  *      limitations under the License.
  77.  */

  78. /**
  79.  * <i>PowerIterationComponentExtractor</i> extracts the Linear System Components using the Power Iteration
  80.  * Method.
  81.  *
  82.  * <br><br>
  83.  *  <ul>
  84.  *      <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
  85.  *      <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalAnalysisLibrary.md">Numerical Analysis Library</a></li>
  86.  *      <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/numerical">Numerical Quadrature, Differentiation, Eigenization, Linear Algebra, and Utilities</a></li>
  87.  *      <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/numerical/eigen">QR PICE Eigen-Component Extraction Methodologies</a></li>
  88.  *  </ul>
  89.  * <br><br>
  90.  *
  91.  * @author Lakshmi Krishnamurthy
  92.  */

  93. public class PowerIterationComponentExtractor
  94.     implements org.drip.numerical.eigen.ComponentExtractor
  95. {
  96.     private int _maxIterations = -1;
  97.     private boolean _isToleranceAbsolute = false;
  98.     private double _tolerance = java.lang.Double.NaN;

  99.     /**
  100.      * PowerIterationComponentExtractor Constructor
  101.      *
  102.      * @param maxIterations Maximum Number of Iterations
  103.      * @param tolerance Tolerance
  104.      * @param isToleranceAbsolute Is Tolerance Absolute
  105.      *
  106.      * @throws java.lang.Exception Thrown if the Inputs are Invalid
  107.      */

  108.     public PowerIterationComponentExtractor (
  109.         final int maxIterations,
  110.         final double tolerance,
  111.         final boolean isToleranceAbsolute)
  112.         throws java.lang.Exception
  113.     {
  114.         if (0 >= (_maxIterations = maxIterations) ||
  115.             !org.drip.numerical.common.NumberUtil.IsValid (
  116.                 _tolerance = tolerance
  117.             ) || 0. == _tolerance
  118.         )
  119.         {
  120.             throw new java.lang.Exception (
  121.                 "PowerIterationComponentExtractor ctr: Invalid Inputs!"
  122.             );
  123.         }

  124.         _isToleranceAbsolute = isToleranceAbsolute;
  125.     }

  126.     /**
  127.      * Retrieve the Maximum Number of Iterations
  128.      *
  129.      * @return The Maximum Number of Iterations
  130.      */

  131.     public int maxIterations()
  132.     {
  133.         return _maxIterations;
  134.     }

  135.     /**
  136.      * Retrieve the Tolerance Level
  137.      *
  138.      * @return The Tolerance Level
  139.      */

  140.     public double tolerance()
  141.     {
  142.         return _tolerance;
  143.     }

  144.     /**
  145.      * Indicate if the specified Tolerance is Absolute
  146.      *
  147.      * @return TRUE - The specified Tolerance is Absolute
  148.      */

  149.     public boolean isToleranceAbsolute()
  150.     {
  151.         return _isToleranceAbsolute;
  152.     }

  153.     @Override public org.drip.numerical.eigen.EigenComponent principalComponent (
  154.         final double[][] a)
  155.     {
  156.         if (null == a)
  157.         {
  158.             return null;
  159.         }

  160.         int iterationIndex = 0;
  161.         int componentCount = a.length;
  162.         double eigenValue = componentCount;
  163.         double[] eigenVector = new double[componentCount];
  164.         double[] eigenVectorArray = new double[componentCount];

  165.         if (0 == componentCount || null == a[0] || componentCount != a[0].length)
  166.         {
  167.             return null;
  168.         }

  169.         for (int componentIndex = 0;
  170.             componentIndex < componentCount;
  171.             ++componentIndex)
  172.         {
  173.             eigenVector[componentIndex] = 1.;
  174.         }

  175.         eigenVector = org.drip.numerical.linearalgebra.Matrix.Normalize (
  176.             eigenVector
  177.         );

  178.         double oldEigenValue = eigenValue;
  179.         double absoluteTolerance = _isToleranceAbsolute ? _tolerance : eigenValue * _tolerance;
  180.         absoluteTolerance = absoluteTolerance > _tolerance ? absoluteTolerance : _tolerance;

  181.         while (iterationIndex < _maxIterations)
  182.         {
  183.             for (int componentIndexI = 0;
  184.                 componentIndexI < componentCount;
  185.                 ++componentIndexI)
  186.             {
  187.                 eigenVectorArray[componentIndexI] = 0.;

  188.                 for (int componentIndexJ = 0;
  189.                     componentIndexJ < componentCount;
  190.                     ++componentIndexJ)
  191.                 {
  192.                     eigenVectorArray[componentIndexI] +=
  193.                         a[componentIndexI][componentIndexJ] * eigenVector[componentIndexJ];
  194.                 }
  195.             }

  196.             eigenVectorArray = org.drip.numerical.linearalgebra.Matrix.Normalize (
  197.                 eigenVectorArray
  198.             );

  199.             try {
  200.                 eigenValue = org.drip.numerical.linearalgebra.Matrix.RayleighQuotient (
  201.                     a,
  202.                     eigenVectorArray
  203.                 );
  204.             }
  205.             catch (java.lang.Exception e)
  206.             {
  207.                 e.printStackTrace();

  208.                 return null;
  209.             }

  210.             if (absoluteTolerance > java.lang.Math.abs (
  211.                 eigenValue - oldEigenValue
  212.             ))
  213.             {
  214.                 break;
  215.             }

  216.             eigenVector = eigenVectorArray;
  217.             oldEigenValue = eigenValue;
  218.             ++iterationIndex;
  219.         }

  220.         if (iterationIndex >= _maxIterations)
  221.         {
  222.             return null;
  223.         }

  224.         try
  225.         {
  226.             return new org.drip.numerical.eigen.EigenComponent (
  227.                 eigenVectorArray,
  228.                 eigenValue
  229.             );
  230.         }
  231.         catch (java.lang.Exception e)
  232.         {
  233.             e.printStackTrace();
  234.         }

  235.         return null;
  236.     }

  237.     @Override public org.drip.numerical.eigen.EigenOutput eigenize (
  238.         final double[][] a)
  239.     {
  240.         return null;
  241.     }
  242. }