PowerIterationComponentExtractor.java

package org.drip.numerical.eigen;

/*
 * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
 */

/*!
 * Copyright (C) 2020 Lakshmi Krishnamurthy
 * Copyright (C) 2019 Lakshmi Krishnamurthy
 * Copyright (C) 2018 Lakshmi Krishnamurthy
 * Copyright (C) 2017 Lakshmi Krishnamurthy
 * Copyright (C) 2016 Lakshmi Krishnamurthy
 * Copyright (C) 2015 Lakshmi Krishnamurthy
 * 
 *  This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
 *  	asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
 *  	analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
 *  	equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
 *  	numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
 *  	and computational support.
 *  
 *  	https://lakshmidrip.github.io/DROP/
 *  
 *  DROP is composed of three modules:
 *  
 *  - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
 *  - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
 *  - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
 * 
 * 	DROP Product Core implements libraries for the following:
 * 	- Fixed Income Analytics
 * 	- Loan Analytics
 * 	- Transaction Cost Analytics
 * 
 * 	DROP Portfolio Core implements libraries for the following:
 * 	- Asset Allocation Analytics
 *  - Asset Liability Management Analytics
 * 	- Capital Estimation Analytics
 * 	- Exposure Analytics
 * 	- Margin Analytics
 * 	- XVA Analytics
 * 
 * 	DROP Computational Core implements libraries for the following:
 * 	- Algorithm Support
 * 	- Computation Support
 * 	- Function Analysis
 *  - Model Validation
 * 	- Numerical Analysis
 * 	- Numerical Optimizer
 * 	- Spline Builder
 *  - Statistical Learning
 * 
 * 	Documentation for DROP is Spread Over:
 * 
 * 	- Main                     => https://lakshmidrip.github.io/DROP/
 * 	- Wiki                     => https://github.com/lakshmiDRIP/DROP/wiki
 * 	- GitHub                   => https://github.com/lakshmiDRIP/DROP
 * 	- Repo Layout Taxonomy     => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
 * 	- Javadoc                  => https://lakshmidrip.github.io/DROP/Javadoc/index.html
 * 	- Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
 * 	- Release Versions         => https://lakshmidrip.github.io/DROP/version.html
 * 	- Community Credits        => https://lakshmidrip.github.io/DROP/credits.html
 * 	- Issues Catalog           => https://github.com/lakshmiDRIP/DROP/issues
 * 	- JUnit                    => https://lakshmidrip.github.io/DROP/junit/index.html
 * 	- Jacoco                   => https://lakshmidrip.github.io/DROP/jacoco/index.html
 * 
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *   	you may not use this file except in compliance with the License.
 *   
 *  You may obtain a copy of the License at
 *  	http://www.apache.org/licenses/LICENSE-2.0
 *  
 *  Unless required by applicable law or agreed to in writing, software
 *  	distributed under the License is distributed on an "AS IS" BASIS,
 *  	WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  
 *  See the License for the specific language governing permissions and
 *  	limitations under the License.
 */

/**
 * <i>PowerIterationComponentExtractor</i> extracts the Linear System Components using the Power Iteration
 * Method.
 * 
 * <br><br>
 *  <ul>
 *		<li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
 *		<li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalAnalysisLibrary.md">Numerical Analysis Library</a></li>
 *		<li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/numerical">Numerical Quadrature, Differentiation, Eigenization, Linear Algebra, and Utilities</a></li>
 *		<li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/numerical/eigen">QR PICE Eigen-Component Extraction Methodologies</a></li>
 *  </ul>
 * <br><br>
 *
 * @author Lakshmi Krishnamurthy
 */

public class PowerIterationComponentExtractor
	implements org.drip.numerical.eigen.ComponentExtractor
{
	private int _maxIterations = -1;
	private boolean _isToleranceAbsolute = false;
	private double _tolerance = java.lang.Double.NaN;

	/**
	 * PowerIterationComponentExtractor Constructor
	 * 
	 * @param maxIterations Maximum Number of Iterations
	 * @param tolerance Tolerance
	 * @param isToleranceAbsolute Is Tolerance Absolute
	 * 
	 * @throws java.lang.Exception Thrown if the Inputs are Invalid
	 */

	public PowerIterationComponentExtractor (
		final int maxIterations,
		final double tolerance,
		final boolean isToleranceAbsolute)
		throws java.lang.Exception
	{
		if (0 >= (_maxIterations = maxIterations) ||
			!org.drip.numerical.common.NumberUtil.IsValid (
				_tolerance = tolerance
			) || 0. == _tolerance
		)
		{
			throw new java.lang.Exception (
				"PowerIterationComponentExtractor ctr: Invalid Inputs!"
			);
		}

		_isToleranceAbsolute = isToleranceAbsolute;
	}

	/**
	 * Retrieve the Maximum Number of Iterations
	 * 
	 * @return The Maximum Number of Iterations
	 */

	public int maxIterations()
	{
		return _maxIterations;
	}

	/**
	 * Retrieve the Tolerance Level
	 * 
	 * @return The Tolerance Level
	 */

	public double tolerance()
	{
		return _tolerance;
	}

	/**
	 * Indicate if the specified Tolerance is Absolute
	 * 
	 * @return TRUE - The specified Tolerance is Absolute
	 */

	public boolean isToleranceAbsolute()
	{
		return _isToleranceAbsolute;
	}

	@Override public org.drip.numerical.eigen.EigenComponent principalComponent (
		final double[][] a)
	{
		if (null == a)
		{
			return null;
		}

		int iterationIndex = 0;
		int componentCount = a.length;
		double eigenValue = componentCount;
		double[] eigenVector = new double[componentCount];
		double[] eigenVectorArray = new double[componentCount];

		if (0 == componentCount || null == a[0] || componentCount != a[0].length)
		{
			return null;
		}

		for (int componentIndex = 0;
			componentIndex < componentCount;
			++componentIndex)
		{
			eigenVector[componentIndex] = 1.;
		}

		eigenVector = org.drip.numerical.linearalgebra.Matrix.Normalize (
			eigenVector
		);

		double oldEigenValue = eigenValue;
		double absoluteTolerance = _isToleranceAbsolute ? _tolerance : eigenValue * _tolerance;
		absoluteTolerance = absoluteTolerance > _tolerance ? absoluteTolerance : _tolerance;

		while (iterationIndex < _maxIterations)
		{
			for (int componentIndexI = 0;
				componentIndexI < componentCount;
				++componentIndexI)
			{
				eigenVectorArray[componentIndexI] = 0.;

				for (int componentIndexJ = 0;
					componentIndexJ < componentCount;
					++componentIndexJ)
				{
					eigenVectorArray[componentIndexI] +=
						a[componentIndexI][componentIndexJ] * eigenVector[componentIndexJ];
				}
			}

			eigenVectorArray = org.drip.numerical.linearalgebra.Matrix.Normalize (
				eigenVectorArray
			);

			try {
				eigenValue = org.drip.numerical.linearalgebra.Matrix.RayleighQuotient (
					a,
					eigenVectorArray
				);
			}
			catch (java.lang.Exception e)
			{
				e.printStackTrace();

				return null;
			}

			if (absoluteTolerance > java.lang.Math.abs (
				eigenValue - oldEigenValue
			))
			{
				break;
			}

			eigenVector = eigenVectorArray;
			oldEigenValue = eigenValue;
			++iterationIndex;
		}

		if (iterationIndex >= _maxIterations)
		{
			return null;
		}

		try
		{
			return new org.drip.numerical.eigen.EigenComponent (
				eigenVectorArray,
				eigenValue
			);
		}
		catch (java.lang.Exception e)
		{
			e.printStackTrace();
		}

		return null;
	}

	@Override public org.drip.numerical.eigen.EigenOutput eigenize (
		final double[][] a)
	{
		return null;
	}
}